LESSON PLAN

Class: T.E. Production Academic Term: Jan-Apr 2019 Course: Robotics

Faculty Member: Prof. D.S.S. Sudhakar/ Prof. Saurabh Korgaonkar

Course Objectives:

- 1. To acquaint with the significance of robot system in agile and automated manufacturing processes.
- 2. To make conversant with robotic element / peripherals, their selection and interface with manufacturing equipments.
- **3.** The learner will be able to understand the basics of robot kinematics.
- 4. Will be able to understand the basics of robotic vision.

Periods (Hours) per week:

Lecture: 3 Practical: 0

University Evaluation Method:

Theory examination: 80 Marks (3 Hrs) Internal Assessment: 20 Marks Term work: 0 Marks Total: 100 Marks

Mapping of CO's to PO's:

CO# / PO#	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CourseCode.1	2	0	2	0	0	0	0	0	0	0	0	0	2	2
CourseCode.2	2	2	2	0	2	0	0	0	0	0	0	0	2	2
CourseCode.3	2	2	2	0	2	0	0	0	0	0	0	0	2	2
CourseCode.4	2	2	2	0	2	0	0	0	0	0	0	0	2	2

CO Attainment Scheme:

COURSE OUTCOME	MEASUREMENT FORMULA				
	CO1 through Direct Assessment (=0.3*test1 + 0.3*assign1				
CourseCode.1	+0.4* university result)+CO1 through InDirect Assessment				
	(=1*course exit survey)				
CourseCode 2	CO2 through Direct Assessment (=0.2*test 1+				
CourseCode.2	0.2*assign2+0.2*assign3 +0.4* university result)+				

	CO2 through InDirect Assessment (=1*course exit survey)
	CO3 through Direct Assessment (=0.3*test2 + 0.3*assign
CourseCode.3	4+0.4* university result)+CO3 through InDirect Assessment
	(=1*course exit survey)
	CO4 through Direct Assessment (=0.2*test2 +
CourseCode.4	0.2*assign5+0.2*assign6 +0.4* university result)+
	CO4 through InDirect Assessment (=1*course exit survey)

Syllabus :

Module	Contents	Hrs.
01	Introduction Automation, robotics, Robotic system & Anatomy, Classification and Future Prospects.	02
02	 2.1 Drives Control Loops, Basic Control System Concepts & Models, Control System Analysis, Robot Activation & Feedback Components, Position & Velocity Sensors, Actuators and Power Transmission system. 2.2 Robot & its Peripherals 2.3 End Effecters: Type mechanical and other grippers, Tool as endeffecter. Sensors: Sensors in Robotics, Tactile Sensors, Proximity & Range Sensors, Sensor Based Systems, Vision systems and Equipment. Introduction to the Microcontroller (Arduino) and interfacing with a sensor 	10
03	 3.1 Machine vision Introduction, Low level & High level Vision, Sensing & Digitizing, Image Processing & analysis, Segmentation, Edge detection, Object Description & recognition, interpretation and Applications. 3.2 Programming for Robots Method, Robot Programme as a path in space, Motion interpolation, motion & task level Languages, Robot languages, Programming in suitable languages and characteristics of robot. 	10
04	4.1 Robot Kinematics Forward, reverse & Homogeneous Transformations, Manipulator Path control and Robot Dynamics.	08
05	5.1 Root Intelligence & Task Planning Introduction, State space search, Problem reduction, use of predictive Logic, Means. Ends Analysis, Problem solving, Robot learning and Robot task planning.	07
06	6.1 Robot application in manufacturing Material transfer, machine loading & un loading, processing operation, Assembly & inspectors, robotic Cell design & control, Social issues & Economics of Robotics.	06

Lesson Plan:

Week	Date	Duration	Торіс	*Method of	Remarks
		(Hrs.)		Teaching	(If Any)
	2/1/2019	1	Introduction to robotics	РРТ	
1	4/1/2019	1	Robotic systems and anatomy,	РРТ	
	7/1/2019	1	Classification of robots	РРТ	
	9/1/2019	1	Future prospects	PPT	
2	11/1/2019	1	Drives	РРТ	
	14/1/2019	1	Control loops, basic control system & Control Models	BLACKBOARD	
	16/1/2019	1	Control system analysis	BLACKBOARD	
3	18/1/2019	1	Robot activation & Feedback Components	BLACKBOARD	
	21/1/2019	1	Actuators & Power transmission systems	РРТ	
	23/1/2019	1	End-Effectors & their different uses	РРТ	
4	25/1/2019	1	Sensors	PPT, MINI PROJECT	
	28/1/2019	1	Sensors based systems	PPT,MINI PROJECT	
5	30/1/2019	1	Vision equipment	РРТ	
	1/2/2019	1	Machine vision -> Introduction and Classification between high and low level vision	PPT, MATLAB	
	8/2/2019	1	Sensing and Digitizing	PPT, MATLAB	
6	11/2/2019	1	Image processing & analysis	PPT, MATLAB	

			1	
	18/2/2019	1	Edge detection	PPT, MATLAB
	20/2/2019	1	Template matching	PPT, MATLAB
7	22/2/2019	1	Applications	PPT, MATLAB
	25/2/2019	1	Robot kinematics -> Direct kinematics	BLACKBOARD
8	27/2/2019	1	Direct kinematics of 2 DOF and 3 DOF robot arm	BLACKBOARD
	1/3/2019	1	Direct kinematics of SCARA robot	BLACKBOARD
	6/3/2019	1	Direct kinematics of 6 DOF robot	BLACKBOARD
	8/3/2019	1	Inverse kinematics	BLACKBOARD
9	11/3/2019	1	Inverse kinematics examples	BLACKBOARD
	13/3/2019	1	Robot intelligence and task planning introduction	BLACKBOARD
10	15/3/2019	1	State space search	BLACKBOARD
	18/3/2019	1	Robot learning	BLACKBOARD
	20/3/2019	1	Robot task planning	BLACKBOARD
11	22/3/2019	1	Robot trajectory planning	BLACKBOARD
	25/3/2019	1	Robots cell design	BLACKBOARD
	27/3/2019	1	Robotic application in manufacturing	РРТ
12	29/3/2019	1	Social issues and Economics of Robotics	РРТ
	1/4/2019	1	Sensors- Mini Project Presentation	PPT
	3/4/2019	1	Sensors- Mini Project Presentation	РРТ

* Methods of Teaching include but are not limited to following list:

- ✔ Lecture
- ✔ Demonstration
- ✔ Models
- ✔ PPTs
- ✔ Simulations and Animations
- ✔ Case Studies
- ✔ Mini Projects

* Method of Conducting Practicals / Tutorials include but not limited to:

- ✔ Experiments
- ✓ Assignments
- \checkmark Presentations
- ✔ Mini Project

Curricullum Gap : NONE

Reference Books:

1. *Industrial Robotics, Technology, Programming & Applications,* Grover, Weiss, Nagel, Ordey, Mc Graw Hill.

2. Robotics: Control, Sensing, Vision & Intelligence, Fu, Gonzalex, Lee, Mc Graw Hill.

- 3. Robotic technology & Flexible Automation, S R Deb. TMH.
- 4. Robotics for Engineers, Yoram Koren, Mc Graw hill.
- 5. Fundamentals of Robotics, Larry Health.
- 6. Robot Analysis & Control, H Asada, JJE Slotine.
- 7. *Robot Technology,* Ed. A Pugh, Peter Peregrinus Ltd. IEE, UK.
- 8. Handbook of Industrial Robotics, Ed. Shimon. John Wiley.