Father Agnel Ashram, Bandstand, Bandra (West), Mumbai-50. Department of Information Technology

B.E. (I.T.) (Semester IV) (2019-2020)

Lecture Plan

Subject: Automata Theory

Credits: 04

Syllabus:

Course Code	Course Name	Credits	
ITC405	Automata Theory	04	

Module	Detailed Contents	Hrs
Ι	Introduction and Regular Languages:	06
	Languages: Alphabets and Strings. Regular Languages:	
	Regular Expressions, Regular Languages, Regular	
	Grammars, RL and LL grammars, Closure properties	
II	Finite Automata and machines:	09
	Finite Automata: FA as language acceptor or verifier, NFA	
	(with and without ε), DFA, RE to NFA, NFA to DFA,	
	Reduced DFA, NFA-DFA equivalence, FA to RE. Finite	
	State Machines: m/c with output Moore and Mealy	
	machines. M/c as translators. Mealy and Moore m/c	
	conversion	
III	Context Free Grammars:	08
	Context Free Languages: CFG, Leftmost and Rightmost	
	derivations, Ambiguity, Simplification and Normalization	
	(CNF) and Chomsky Hierarchy (Types 0 to 3)	
IV	Push Down Automata:	05
	Deterministic (single stack)PDA, Equivalence between	
	PDA and CFG.	
\mathbf{V}	Turing Machine:	07
	Deterministic TM, Multi-track and Multi-tape TMs, concept	
	of UTM and idea of system program. Issue and concept of	
	Halting Problem	
VI	Application s of Automata:	04
	1.Power and Limitations of Regular and Context Free	
	Grammars and Machines	
	2.Designing Functions: FA: Acceptor and Verifier. FSM:	
	Translator PDA: Simple Parser for WF parenthesis,	
	palindromes etc. TM: Basic bit wise calculator(+ /-	
	/AND/OR) and Translator	

Father Agnel Ashram, Bandstand, Bandra (West), Mumbai-50. Department of Information Technology

B.E. (I.T.) (Semester IV) (2019-2020)

Lecture Plan

Subject: Automata Theory

Credits: 04

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India

References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Theory of Computation By Vivek Kulkarni from Oxford University.
- 4. N. Chandrashekhar & K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Outcomes:

CO1	Understand, design, construct, analyze and interpret Regular languages, Expression
	and Grammars.
CO2	Design different types of Finite Automata and Machines as Acceptor, Verifier and
	Translator.
CO3	Understand, design, analyze and interpret Context Free languages, Expression and
	Grammars.

Father Agnel Ashram, Bandstand, Bandra (West), Mumbai-50. Department of Information Technology

B.E. (I.T.) (Semester IV) (2019-2020)

Lecture Plan

Subje	ct: Automata Theory Credits: 04
CO4	Design different types of Push down Automata as Simple Parser.
CO5	Design different types of Turing Machines as Acceptor, Verifier, Translator and Basic
	computing machine.
CO6	Compare, understand and analyze different languages, grammars, Automata and
	Machines and appreciate their power and convert Automata to Programs and
	Functions.

CO-PO and CO-PSO Mapping

Course Outcome	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1						1			2	1	2
CO2	1	3	3						1			2	1	1
CO3	1	2	3						1			2	2	1
CO4	1	3	3	2					2			2	2	1
CO5	1	3	3	2					2			2	2	1
CO6	2	1							2			1	1	2

1-Low Correlation (Low), 2 – Medium Correlation (Medium), 3 – High Correlation (High)

CO Assessment Tools with Target

Course Outcome	Direct	Methods	Indirect Method		
	Test 1	Test 2	Tutorials	University Result	Course Exit Survey
CO1	50%		25%	25%	100%
CO2	50%		25%	25%	100%
CO3		25%	25%	50%	100%
CO4		25%	25%	50%	100%
CO5		25%	25%	50%	100%
CO6		25%	25%	50%	100%

Lecture Plan:

No. of Lectures Planned:	32	No. of Classes Taken:		
Sr. No.	Topic Planned	Planned Date	Actual Date	Delivery Mechanisms
1	Languages: Alphabets and Strings. Regular Languages: Regular Expressions	06/01/20		Board
2	Regular Languages, Regular Grammars	07/01/20		Board
3	RL and LL Grammar, Closure Properties	08/01/20		Board

Father Agnel Ashram, Bandstand, Bandra (West), Mumbai-50. Department of Information Technology

B.E. (I.T.) (Semester IV) (2019-2020)

Lecture Plan

Subject: A	utomata Theory		Credits: 04
4	Finite Automata: FA as language acceptor	13/01/20	Board
_	or verifier	14/01/20	
5	NFA (with and without ε)	14/01/20	Board
6	DFA, RE to NFA	15/01/20	Board
7	NFA to DFA	21/01/20	Board
8	Reduced DFA, NFA-DFA equivalence	23/01/20	Board
9	FA to RE	24/01/20	Board
10	M/c with output Moore Machine	28/01/20	Board
11	Mealy machines	30/01/20	Board
12	M/c as translators	31/01/20	Board
13	Mealy and Moore m/c conversion	04/02/20	Board
14	CFG	06/02/20	Board
15	Leftmost and Rightmost derivations	07/02/20	Board
16	Ambiguity	11/02/20	Board
17	Simplification	13/02/20	Board
18	Normalization (CNF)	14/02/20	Board
19	Normalization (GNF)	25/02/20	Board
20	Chomsky Hierarchy (Types 0 to 3)	03/03/20	Board
21	Deterministic (single stack)PDA	05/03/20	Board
22	Deterministic (single stack)PDA	06/03/20	Board
23	Equivalence between PDA and CFG	12/03/20	Board
24	Deterministic TM	13/03/20	Board
25	Deterministic TM	17/03/20	Board
26	Multi-track and Multi-tape TMs	19/03/20	Board
27	Concept of UTM and idea of system	24/03/20	Board
20	program	26/02/20	D 1
28	Issue and concept of Halting Problem	26/03/20	Board
29	Power and Limitations of Regular and Context Free Grammars and Machines	27/03/20	Board
30	FA: Acceptor and Verifier. FSM: Translator	31/03/20	Board
31	PDA: Simple Parser for WF parenthesis, palindromes etc	02/04/20	Board
32	TM: Basic bit wise calculator(+ /- /AND/OR) and Translator	03/04/20	Board

Father Agnel Ashram, Bandstand, Bandra (West), Mumbai-50. Department of Information Technology

B.E. (I.T.) (Semester IV) (2019-2020)

Lecture Plan

Subject: Automata Theory

Credits: 04

Tutorial Plan:

No. of Tutorials Planned:		No. of Tutorials Taken:		
Sr. No.	Topic Planned	Planned Date	Actual Date	Method of Conduct
1	Design of RE, Conversion of RE to €-NFA	24/01/20		Class Tutorial + Online Quiz
2	DFA, Minimization of DFA	31/01/20		Class Tutorial + Online Quiz
3	Moore and Mealy Machines	07/02/20		Class Tutorial + Online Quiz
4	CFG, Leftmost and Rightmost Derivations, Parse Tree	14/02/20		Class Tutorial + Online Quiz
5	CFG to CNF and GNF	06/03/20		Class Tutorial + Online Quiz
6	PDA	13/03/20		Class Tutorial + Online Quiz
7	ТМ	27/03/20		Class Tutorial + Online Quiz
8	Applications of Automata	03/04/20		Online Quiz