Lesson Plan

Branch: FE Computer Engineering

Semester: II Year: 2022-23

Course Title: Engineering Mathematics II	SEE: 3 Hours – Theory
Total Contact Hours:	Duration of SEE: 3 Hours
30 (Theory) + 05 (Tutorial) = 35 Hours	
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Gajendra Singh	Date: 04/03/2023
Checked By:	Date: 02/06/2023

Prerequisites: Review of complex numbers – Algebra of complex number, Cartesian, Polar and Exponential form of complex number

Syllabus:

Prerequisite: Theory of integration and tracing of curves

1. Differential Equations of First Order and First Degree

- Exact differential Equations, Equations reducible to exact form by using integrating factors.
- Linear differential equations (Review), equation reducible to linear form, Bernoulli 's equation.

2. Linear Differential Equations with Constant Coefficients and Variable Coefficients of Higher Order

- Linear Differential Equation with constant coefficient- complementary function, particular integrals of differential equation of the type f(D)y = X where X is e^{ax} , $\sin(ax + b)$, $e^{ax}V$, xV
- Method of variation of parameters.

3. Beta and Gamma Function, Differentiation under Integral sign and Rectification

- Beta and Gamma functions and its properties.
- Differentiation under integral sign with constant limits of integration.
- Rectification of plane curves (Cartesian and polar).

4. Multiple Integration-1

- Double integration-definition, Evaluation of Double Integrals. (Cartesian & Polar)
- Evaluation of double integrals by changing the order of integration.
- Evaluation of integrals over the given region (Cartesian & Polar).

5. Multiple Integration-2

- Evaluation of double integrals by changing to polar coordinates.
- Application of double integrals to compute Area
- Triple integration definition and evaluation (Cartesian, cylindrical and spherical polar coordinates).

6. Numerical solution of ordinary differential equations of first order and first degree, and, Numerical Integration

- Numerical solution of ordinary differential equation using (a) Euler 's method, (b) Modified Euler method, (c) Runge-Kutta fourth order method
- Numerical integration- by (a) Trapezoidal (b) Simpson 's 1/3rd (c) Simpson 's 3/8th rule (all with proof).

Course Outcomes (CO):

On successful completion of course learner will be able to:

- **FEC201.1**. Apply the concepts of first order and first degree differential equation to the problems in the field of engineering
- **FEC201.2.** Apply the concepts of higher order linear differential equation to the engineering problems
- **FEC201.3.** Apply concepts of Beta and Gamma function to solve improper integrals
- **FEC201.4.** Apply concepts of double integral of different coordinate systems to the engineering problems like area and mass
- **FEC201.5** Apply concepts of triple integral of different coordinate systems to the engineering problems and problems based on volume of solids
- **FEC201.6** Solve the differential equations and integrations numerically using SCILAB software to experimental aspect of applied mathematics.

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

СО	BL	С	PI	РО	Mapping
FEC201.1.	3	1.1	1.1.1	PO1	3
Apply the concepts of first order and first degree		1.3	1.3.1		
differential equation to the problems in the field of engineering		5.3	5.3.1	PO5	1
FEC201.2.	3	1.1	1.1.1	PO1	3
Apply the concepts of higher order linear differential		1.3	1.3.1		
equation to the engineering problems		5.3	5.3.1	PO5	1
FEC201.3.	3	1.1	1.1.1	PO1	3
Apply concepts of Beta and Gamma function to solve		1.3	1.3.1		
improper integrals		5.3	5.3.1	PO5	1
FEC201.4. Apply concepts of double integral of different coordinate	3	1.1 1.3	1.1.1	PO1	3
systems to the engineering problems like area and mass		5.3	5.3.1	PO5	1
FEC201.5.	3	1.1	1.1.1	PO1	3
Apply concepts of triple integral of different coordinate		1.3	1.3.1		
systems to the engineering problems and problems based on volume of solids		5.3	5.3.1	PO5	1
FEC201.6. Solve the differential equations and integrations numerically using SCILAB software to experimental aspect of applied mathematics.	1	5.3	5.3.1	PO5	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
FEC201.1	3				1							
FEC201.2	3				1							
FEC201.3	3				1							
FEC201.4	3				1							
FEC201.5	3				1							
FEC201.6					1							

Justification: PO1: The course provides the essential mathematical knowledge required in the fields of engineering and technology.

PO5: The course provides hands-on experience using SCILAB software to handle real-life problems.

CO Measurement Weightages for Tools:

	Test	Lab	Assignment	SEE (O)	SEE (T)	Course Exit
						Survey
FEC201.1	30%		10%		60%	100%
FEC201.2	30%		10%		60%	100%
FEC201.3	30%		10%		60%	100%
FEC201.4	30%		10%		60%	100%
FEC201.5	30%		10%		60%	100%
FEC201.6		100%				100%

Attainment:

CO FEC201.1:

Direct Method

$$A_{FEC201.1D} = 0.3*Test + 0.1*Tutorial + 0.6*SEE_Theory$$

Final Attainment:

$$A_{FEC201.1} = 0.8 * A_{FEC201.1D} + 0.2 * A_{FEC201.1I}$$

CO FEC201.2:

Direct Method

$$A_{FEC201.2D} = 0.3*Test + 0.1*Tutorial + 0.6*SEE_Theory$$

Final Attainment:

$$A_{{\scriptscriptstyle FEC201.2}} = 0.8*A_{{\scriptscriptstyle FEC201.2D}} + 0.2*A_{{\scriptscriptstyle FEC201.2I}}$$

CO FEC203.3:

Direct Method

$$A_{FEC201.3D} = 0.3*Test + 0.1*Tutorial + 0.6*SEE_Theoryy$$

Final Attainment:

$$A_{FEC201.3} = 0.8 * A_{FEC201.3D} + 0.2 * A_{FEC201.3I}$$

CO FEC204.4:

Direct Method

$$A_{FEC201.4D} = 0.3*Test + 0.1*Tutorial + 0.6*SEE_Theory$$

Final Attainment:

$$A_{{\scriptscriptstyle FEC}201.4} = 0.8*A_{{\scriptscriptstyle FEC}201.4D} + 0.2*A_{{\scriptscriptstyle FEC}201.4I}$$

CO FEC201.5:

Direct Method

 $A_{FEC201.5D} = 0.3*Test + 0.1*Tutorial + 0.6*SEE_Theory$

Final Attainment:

 $A_{FEC201.5} = 0.8*A_{FEC201.5D} + 0.2*A_{FEC201.5I}$

CO FEC201.6:

Direct Method

 $A_{FEC201.6D} = 1 * Scilab Practical$

Final Attainment:

 $A_{{\scriptscriptstyle FEC201.6}} = 0.8*A_{{\scriptscriptstyle FEC201.6D}} + 0.2*A_{{\scriptscriptstyle FEc201.6I}}$

Course Level Gap (if any): No Content beyond Syllabus: No

Lecture Plan (Theory):

Module	Contents	Hour s	Planned Date	Actual Date	Content Delivery Method	Remark
03	Beta and Gamma functions and its properties.	06	10/03/2023	10/03/2023	chalk and board	
	Beta and Gamma functions and its properties.		13/03/2023	13/03/2023	chalk and board	
	Differentiation under integral sign with constant limits of integration.		14/03/2023	14/03/2023	chalk and board	
	Differentiation under integral sign with constant limits of integration.		17/03/2023	17/03/2023	chalk and board	
	Rectification of plane curves (Cartesian and polar).		20/03/2023	20/03/2023	chalk and board	
	Rectification of plane curves (Cartesian and polar).		21/03/2023	21/03/2023	chalk and board	
04	Double integration- definition, Evaluation of Double Integrals. (Cartesian & Polar)	06	24/03/2023	24/03/2023	chalk and board	
	Double integration- definition, Evaluation of Double Integrals. (Cartesian & Polar)		27/03/2023	03/04/2023	chalk and board	Euphoria
	Evaluation of double		28/03/2023	05/04/2023	Smart	

	I., ,, ,			1	T
	integrals by changing				Board,
	the order of				chalk and
	integration.				board
	Evaluation of double				Smart
	integrals by changing		31/03/2023	06/04/2022	Board,
	the order of		31/03/2023	06/04/2023	chalk and
	integration.				board
	Evaluation of				Smart
	integrals over the				Board,
	given region		3/04/2023	10/04/2023	chalk and
	(Cartesian & Polar).				board
	Evaluation of				Smart
	integrals over the		10/04/2023	11/04/2023	Board,
	given region				chalk and
	(Cartesian & Polar).				board
5	Evaluation of double	06			Smart
	integrals by changing		11/04/2023	12/04/2023	Board,
			11/04/2023	12/04/2023	chalk and
	to polar coordinates.				board
	- 1 6 1 11				Smart
	Evaluation of double				Board,
	integrals by changing		12/04/2023	24/04/2023	chalk and
	to polar coordinates				board
					Smart
	Application of double				
	integrals to compute	24/04/2023	25/04/2023	Board,	
	Area				chalk and
					board
	Application of double				Smart
	integrals to compute		25/04/2023	2/05/2023	Board,
	Area		23/01/2023	2,00,2020	chalk and
	711'Cu				board
	Triple integration				
	definition and				Smart
	evaluation		26/04/2022	2 /05 /2022	Board,
	(Cartesian, cylindrical		26/04/2023	3/05/2023	chalk and
	and spherical polar				board
	coordinates).				
	Triple integration				
	definition and				Smart
	evaluation				Board,
			2/05/2023	4/05/2023	
	(Cartesian, cylindrical				chalk and
	and spherical polar				board
	coordinates).				
01		06			Smart
	Exact differential		3/05/2023	8/05/2023	Board,
	Equations		310312023	0,00,2023	chalk and
					board
	Equations reducible				Smart
	to exact form by		0/07/2022	0/05/55	Board,
	using integrating		8/05/2023	9/05/2023	chalk and
	factors				board
	140013			1	Source

	Equations reducible				Smart											
	to exact form by using integrating factors		09/05/2023	10/05/2023	Board, chalk and board											
	Linear differential equations		10/05/2023	11/05/2023	Smart Board, chalk and board											
	Equation reducible to linear form		15/05/2023	15/05/2023	Smart Board, chalk and board											
	Bernoulli 's equation.		16/05/2023	16/05/2023	Smart Board, chalk and board											
02	Linear Differential Equation with constant coefficient- complementary function	05	17/05/2023	17/05/2023	Smart Board, chalk and board											
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $\sin(ax + b)$, $e^{ax}V$, xV													22/05/2023	22/05/2023	Smart Board, chalk and board
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $\sin(ax + b)$, $e^{ax}V$, xV Method of variation of parameters.		23/05/2023	23/05/2023	Smart Board, chalk and board											
	Particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $\sin(ax + b)$, $e^{ax}V$, xV Method of variation of parameters.		24/05/2023	24/05/2023	Smart Board, chalk and board											
	Revision		08/06/2023	08/06/2023	Online											
	Revision		08/06/2023	08/06/2023	Online											

Lecture Plan (Tutorial):

The entire class will be divided into three batches. The common tutorial slot for all the batches is scheduled on Friday (online) 2.45 pm to 3.45 pm.

Module	Contents	Hours	Planned Date	Actual Date	Remark
01	Differential	01	21/04/2023	21/04/2023	Tutorial
	equations: first order				
02	Differential	01	28/04/2023	28/04/2023	Tutorial
	equations: higher				
	order				
03	Rectification, Beta	01	11/05/2023	11/05/2023	Tutorial
	and Gamma				
	functions				
04	Multiple integration	01	22/05/2023	22/05/2023	Tutorial
	1				
05	Multiple integration	01	22/05/2023	22/05/2023	Tutorial
	2				
06	SCILAB Practical	02	21/05/2023	21/05/2023	Scilab
					practical

Text Books:

- 1. Engineering Mathematics-II by G.V. Kumbhojkar, J. Jamnadas Publication
- 2. Engineering Mathematics-II by Dr. N.R. Dasre, TechKnowledge Publication

Reference Books:

- 1. Advance Engineering Mathematics by H.K. Dass, S. Chand & Company Limited
- 2. Advance Engineering Mathematics by Peter O' Neil, Cengage Learning

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

	Module		No.	of questions in	1	No. of
		Hours				questions in
						SEE
			Test 1	Test 2	Test 3*	
1	Differential equations: first	06		02		04 (25 marks)
	order			(10 marks)		
2	Differential equations: higher	06		01		04 (25 marks)
	order			(5 marks)		
3	Beta and Gamma integrals,	06	03			04 (25 marks)
	Rectification		(10 marks)			
4	Multiple Integration 1	06	02			04 (25 marks)
			(10 marks)			
5	Multiple Integration 2	06		01		03 (20 marks)
				(05 marks)		

Note: Four to six questions will be set in the Test paper					
Verified by:					
Programme Coordinator	Subject Expert: Gajendra Singh				