

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

CURRICULUM STRUCTURE THIRD YEAR UG: B.E.

MECHANICAL ENGINEERING

REVISION: FRCRCE-1-25

Effective from Academic Year 2025-26

Dr. DEEPAK BHOIR Dean Academics Dr. BHUSHAN PATIL HOD (Mechanical) DR. SURENDRA RATHOD Principal

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Preamble:

Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries. Government of Maharashtra has also directed Autonomous Colleges to revise their curriculum in line with National

Education Policy (NEP) 2020 through Government Resolution dated 4th July 2023. We commit to ourselves to the effective implementation of UGC Regulations and NEP 2020 in its spirit.

Based on recent recommendations of the GR, we are pleased to offer our holistic curriculum for 2024-28, a "H-Tree Model" of Engineering Education Curriculum is carefully designed to systematically develop IQ (Intelligence Quotient), PQ (Physical Quotient), EQ (Emotional Quotient) and SQ (Spiritual Quotient) of a learner. This curriculum aims at the development of an all-rounded personality with holistic approach to education in which learner receives 25% teacher-led learning, 25% peer learning, 25% self-learning and 25% experiential learning. The curriculum model is outcome based that focuses on learning by doing. Curriculum is designed to provide multiple learning opportunities for students to acquire and demonstrate competencies for rewarding careers. It ensures multiple choices to leaner acquiring skills through systematic planning. It has 7 verticals aligned to GR recommendations with strong science, and mathematics foundation and program core, sequel of electives, Multidisciplinary Minor courses, humanities & management courses and sufficient experiential learning through projects and semester-long industry / research internship along with employable skill-based courses. Learner gets an opportunity to acquire skills through NSDC aligned courses during summer vacations. Learner also gets additional option to choose the kind of degree i.e. Honors or Double Minor or Honors with Research.

Various steps are taken to transform teaching learning process to make learning a joyful experience for students. We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units.

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Curriculum Structure for UG Programs at Fr CRCE w.e.f. A.Y. 2025-26

Nomen	clature of the courses in the curriculum
Abbreviation	Title
BSESC	Basic Science & Engineering Science Courses
PCPEC	Program Core and Program Elective Courses
MDC	Multidisciplinary Courses
SC	Skill Courses
HSSM	Humanities, Social Sciences and Management
EL	Experiential Learning
LLC	Liberal Learning Courses
BSC	Basic Science Courses
ESC	Engineering Science Courses
PCC	Program Core Courses
PEC	Program Elective Courses
MDM	Multidisciplinary Minor
OE	Open Elective
VSEC	Vocational and Skill Enhancement Course
VSC	Vocational Skill Courses
SEC	Skill Enhancement Courses
AEC	Ability Enhancement Course
EEMC	Entrepreneurship, Economics and Management Course
IKS	Indian Knowledge System
VEC	Value Education
RM	Research Methodologies
CEFP	Community Engagement or Field Project
ELC	Experiential Learning Courses
PRJ	Project
INT	Internship
CC	Cocurricular Courses
НММ	Honors and Multidisciplinary Minor
DM	Double Minor
BC	Bridge Course

Credit Specification:

- Theory: 1 credit=13 to 15 hrs of teaching
- Lab: 1 Credit=26 to 30 hrs of lab work
- Studio Activities: 1 Credit= 26 to 30 hrs of creative activities
- Workshop Based Activities: 1 Credit=26 to 30 hrs of hands-on activities related to vocation/professional practice/skill based
- Seminar/Group Discussion: 1 Credit=13 to 15 hrs of participation
- Internship: 1 Credit=Per 2 weeks OR 36 to 40 hrs of engagement
- Field Based Learning/Practices: 1 Credit=26 to 30 hrs of learning activities
- Community Engagement Projects: 1 Credit=26 to 30 hrs of contact time along with 13 to 15 hrs of activities preparation, report writing, independent reading etc.

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Credit requirements for different options of the Degrees:

Degree/SEM	I	Ш		IV	V	VI	VII	VIII	Total
B.E	18	20	22+4#	23+5#	20	20	20	20	163+9#=172
B.E with	18	20	22+4#	23+5#	20+4*	20+4*	20+6*	20+4*	163+9#+18*=190
Honors/Minors									

Bridge courses

*Optional Credits

1. Learners who earn a minimum of total **172 credits** will be awarded "Bachelor of Engineering" degree.

2. Learners will have the following options to earn **B. E. in(regular) Engineering with Honours/Minor in** (specialization)

Sr. No.	Honors/Minor degree programs	Programs who can offer this Honours Degree Program	Programs who can offer this as Minor Degree program
1	Internet of Things	 Computer Engineering Artificial Intelligence & Data Science Electronics and Computer Science Mechanical Engineering 	
2	Artificial Intelligence and Machine Learning	 Computer Engineering Electronics and Computer Science 	Mechanical Engineering
3	Data Science	 Computer Engineering Electronics and Computer Science Mechanical Engineering 	
4	Blockchain	1. Computer Engineering 2. Artificial Intelligence & Data Science 3. Electronics and Computer Science	Mechanical Engineering
5	Cyber Security	 Computer Engineering Artificial Intelligence & Data Science Electronics and Computer Science 	Mechanical Engineering
6	Robotics	Mechanical Engineering	 Computer Engineering Artificial Intelligence & Data Science Electronics and Computer Science
7	3D Printing	Mechanical Engineering	Computer Engineering Artificial Intelligence & Data Science Electronics and Computer Science

3. Honours and Minor Degree Eligibility Criteria for Students:

i. Following is the eligibility criteria for students opting the Honours/ Minor Degree program:

- a. Students with no backlog in semester I, II, and III
- b. The CGPI (based on semester I, II, and III) of the students must be 6.75 and above

c. For direct second year (DSE) admitted students - No backlog in semester III and CGPI must be 6.75 and above

- ii) Each eligible student can opt for maximum one Honour's or one Minor Programs at any time.
- iii) However, it is optional for learners to take Honours/Minor degree program.

Society of St. Francis Xavier, Pilar's

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- iv) The Honours/ Minor degree program can be opted only during regular engineering studies
- v) The student shall complete the Honours/ Minor degree program in stipulated four semesters only.
- 4. Courses offered during internship semester shall be in online mode

5. Learner can earn additional credits by enrolling to skill courses offered in summer. College shall explore feasibility to offer NSDC aligned skill based courses to the learners

6. Technical support team for registration of Academic Bank of Credits (ABC), registration of elective/optional courses, registration of online courses, registration for degree options etc. under supervision of Dean Academics.

Salient Features of Curriculum:

- ✓ Framed as per Government Resolution dated 4th July 2023 in line with National Education Policy (NEP) 2020.
- ✓ Minimum 172 choice-based credit structure with options of Degrees earning additional credits
- ✓ Unique 'H-Tree' Model of Curriculum: Hybrid model for holistic development with happy learning environment having bridge connecting verticals providing unique path for each learner for 3-dimensional growth, Life Long Learning, bridge courses, inclusive model indicating equal distribution of central resources
- ✓ More emphasis on laboratory based and experiential learning
- ✓ More weightage to continuous assessment to reduce examination stress
- ✓ Mandatory Semester-long internship, courses with emotional & spiritual learning and skill-based learning aligned with NSDC framework
- ✓ Well balanced curriculum to attain Program Outcomes and skills of 21st century learner
- Curriculum is designed to create excitement among learners for education through stories, activities, collaboration, hackathon, contest, case studies, creative art etc.
- ✓ Curriculum is designed to make graduates responsible citizens of country with future ready skills to handle challenges of 21st Century

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

SEMESTERWISE CURRICULUM STRUCTURE

UG Mechanical Engineering Program:

	SEM-V												
Course Code	Course	Sub-	Course Name		Contact		Ex (1 0	aminatio Credit=5	on Mark 0 Marks	s 5)	Cre	dits	
Course Coue	Vertical	Vertical	Course Name		Hours	ISE 1	MS E	ISE 2	ES E	Total	Points	Total	
25PCC13ME11	PCPEC	PCC	Applied Thermodynamics	TH PR	2	20 20	30	20	30	100 50	2	3	
25PCC13ME12	PCPEC	PCC	Theory of Machines	TH	2	20 20	30	20 30	30	100	2	3	
25PCC13ME13	PCPEC	PCC	Metrology and Quality Engineering	TH	2	20	30	20	30	100	2	2	
25PCC13ME14	PCPEC	PCC	CAD/CAM and FEA	TH	2	20 20	30	20	30	100	2	3	
25PCC13ME15	PCPEC	PCC	FEA and CFD Lab	PR	2	20	-	30	-	50	1	1	
25PEC13MEXX	PCPEC	PEC	Program Elective Course	TH TU	2	20 20	30	20	30	100	2	3	
25PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1	
25MDM0X	MDC	MDM	 Health, Wellness and Psychology Emotional and Spiritual Intelligence 	TH	2	50	-	50	-	100	2	2	
250E02V	MDC	OF	Onen Elective 4	TH	1	10	15	10	15	50	1	2	
230E03A	MDC	UE	Open Elective-4	PR	2	20	-	30	-	50	1		
25HXXXC501	HMM/D M	HMM/D M	Honors/Minor Degree Course	TH	4	20	30	20	30	100	4	4*	
				Total	TH:TU:PR 13:2:10=25					1000	-	20	

* Introduced as Optional Honors/Minor Degree Courses

	SEM-VI											
Course Codo	Course	Sub-	Course Name		Contact		Ex: (1 (aminatio Credit=5	on Mark 50 Mark	:s s)	Credits	
Course Coue	Vertical	Vertical	Course Ivanie		Hours	ISE 1	MS E	ISE 2	ES E	Total	Points	Total
25PCC13ME16	PCPEC	PCC	Fluid Mechanics & Hydraulic Machines	TH TU	2	20 20	30	20 30	30	100 50	2	3
25PCC13ME17	PCPEC	PCC	Machine Design	TH TU	2	20 20	30	20 30	30	100 50	2	3
25PCC13ME18	PCPEC	PCC	Fluid Mechanics & Hydraulic Machines Lab	PR	2	20	-	30	-	50	1	1
25PCC13ME19	PCPEC	PCC	Hydraulics and Pneumatics Lab	PR	2	20	-	30	-	50	1	1
25PEC13MEXX	PCPEC	PEC	Program Elective Course	TH	2	20	30	20	30	100	2	3
25PEC13MEXX	PCPEC	PEC	Program Elective Course	TH	2	20	30	20 30	30	100	2	3
25PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1
25PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1
25MDM05	MDC	MDM	Public Relations and Corporate Communication	TH	2	50	-	50	-	100	2	2
25VSE13ME04	SC	VSEC	Measurements and Systems Lab	PR	2	20	-	30	-	50	1	1
25VSE13ME05	SC	VSEC	CNC Lab	PR	2	20	-	30	-	50	1	1
25HXXXC601	HMM/DM	HMM/DM	Honors/Minor Degree Course	TH	4	20	30	20	30	100	4	4*
				Total	TH:TU:PR 10:4:12=26					1000	-	20

* Introduced as Optional Honors/Minor Degree Courses

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Structure of Credits to be completed in Final Year (SEM-VII and/or SEM-VIII):

	SEM-VII and/or SEM-VIII											
Course Code	Course	Sub- Vertical	Course Norma		Contact		Exami (1 Cre	ination M dit=50 M	larks larks)		С	redits
Course Coue	Vertical		Course Name		Hours	ISE 1	MSE	ISE 2	ES E	Total	Points	Total
	PCPEC	PEC	Program Elective		Online		As Per SWAYAM			12	12	
MDM06	MDC	MDM	MDM		Online		As Per SWAYAM				4	4
RMC14ME0 1	EL	RM	Essentials of Research Methodology		Online	As Per SWAYAM				2	2	
RMC14ME0 2	EL	RM	Intellectual Property Rights		Online	As Per SWAYAM				2	2	
PRJ14ME01	EL	PR	Capstone Project	PR	12	100	-	100	-	200	6	6
	PCPEC	PEC	Course Seminar		Online		As per Ru	brics for	Seminar		2	2
INT14ME01	EL	INT	Semester long Internship	PR	36-40 hrs		As Per Ir	nternship	Manual		12	12
HXXXCXXX	HMM/DM	HMM/DM	Honors/Minor Degree Course	TH	Online	As Per SWAYAM				8	8*	
HXXXCXXX	HMM/DM	HMM/DM	Honors/Minor Degree Lab (Project)	nor Degree Lab (Project) PR					2	2*		
			Total						40	40+*10		

@MDM should be Non-technical courses e.g. Principles of Management

Project or Internship is mutually exclusive in SEM-VII or SEM-VIII

Remaining credits can be acquired in SEM-V to SEM-VIII

Online course 1 Credit=4 Week course from SWAYAM can be taken in SEM V to SEM VIII

Online min 8 week course from SWAYAM can be taken in SEM V to SEM VIII to complete 2 credit course (Combination of two 4-week credit courses shall be allowed with prior approval)

* Online min 12 week course from SWAYAM can be taken in SEM V to SEM VIII to complete 3 credit course

List of Program Elective Courses:

Track-1: Manufacturing and Management

SEM-V: Any one Theory:

25PEC13ME11: Supply chain management

25PEC13ME12: Costing and Cost Control

25PEC13ME13: Mould and Metal Forming Technology

25PEC13ME14: Additive Manufacturing

Lab:

25PEC13ME15: Additive Manufacturing

SEM-VI: Any two Theory:

25PEC13ME16: Tool Engineering 25PEC13ME17: Advanced Materials 25PEC13ME18: Optimization Techniques 25PEC13ME19: Project Management 25PEC13ME110: Industrial Engineering and Operations Research Lab: 25PEC13ME111: Manufacturing Systems 25PEC13ME112: Industrial Engineering and Operations Research

Track-2: Design and Automation

SEM-V: *Any one Theory:* 25PEC13ME21: Automation and Control 25PEC13ME22: Finite Element Analysis 25PEC13ME23: Dynamics of Machinery Lab: 25PEC13ME24: Condition Monitoring

SEM-VI: *Any two Theory*:

25PEC13ME25: Industrial Robotics 25PEC13ME26: Modelling and Simulation 25PEC13ME27: Design of Mechanical Systems 25PEC13ME28: Product Design and Development

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Lab:

25PEC13ME29: Robotics and Control Engineering 25PEC13ME210: Product Design

Open Electives offered to Mechanical Engineering students:

SEM-V Any one: 25OE031: Embedded Systems OR 25OE032: IoT OR 25OE033: E-Vehicle

Honors Degree Offered to Mechanical Engineering Students from SEM-V to SEM-VIII:

A. Name: Robotics

- 1. SEM-V: 25HRBC501: Industrial Robotics
- 2. SEM VI: 25HRBC601: Mechatronics & IoT
- 3. SEM VII: HRBC701: Artificial Intelligence & Data Analysis
- 4. SEM VII: HRBSBL701: Robotics and Automation Lab
- 5. SEM VIII: HRBC801: Autonomous Vehicle Systems

B. Name: 3D Printing

- 1. SEM-V: 25H3DPC501: Introduction to CAD
- 2. SEM VI: 25H3DPC601: 3D Printing: Introduction & Processes
- 3. SEM VII: H3DPC701: Applications of 3D Printing
- 4. SEM VII: H3DPSBL701: Skill Based Lab– Digital Fabrication
- 5. SEM VIII: H3DPC801: 3D Printing in Medical Technology

C. Name: Data Science

- 1. SEM-V: 25HDSC501: Mathematics for Data Science
- 2. SEM VI: 25HDSC601: Statistical Learning for Data Science
- 3. SEM VII: HDSC701: Data Science for Health and Social Care
- 4. SEM VII: HDSSBL701: Data Science for Health and Social Care Lab
- 5. SEM VIII: HDSC801: Text, Web and Social Media Analytics

D. Name: Internet of Things

- 1. SEM-V: 25HIoTC501: IoT Sensor Technologies
- 2. SEM VI: 25HIoTC601: IoT System Design
- 3. SEM VII: HIoTC701: Dynamic Paradigm in IoT
- 4. SEM VII: HIoTSBL701: Interfacing & Programming with IoT Lab (SBL)
- 5. SEM VIII: HIoTC801: Industrial IoT

Minors Degree Offered to Mechanical Engineering Students from SEM-V to SEM-VIII: A. Name Artificial Intelligence and Machine Learning

- 1. SEM-V: 25HAIMLC501: Mathematics for AI & ML
- 2. SEM VI: 25HAIMLC601: Game Theory using AI & ML
- 3. SEM VII: HAIMLC701: AI & ML in Healthcare
- 4. SEM VII: HAIMLSBL701: AI & ML in Healthcare: Lab
- 5. SEM VIII: HAIMLC801: Text, Web and Social Media Analytics

B. Name: Blockchain

- 1. SEM-V: 25HBCC501: Bit coin and Crypto currency
- 2. SEM VI: 25HBCC601: Blockchain Platform
- 3. SEM VII: HBCC701: Blockchain Development
- 4. SEM VII: HBCSBL701: Private Blockchain Setup Lab (SBL)
- 5. SEM VIII: HBCC801: DeFi (Decentralized Finance)

C. Name: Cyber Security

- 1. SEM-V: 25HCSC501: Ethical Hacking
- 2. SEM VI: 25HCSC601: Digital Forensic
- 3. SEM VII: HCSC701: Security Information Management

- 4. SEM VII: HCSSBL601: Vulnerability Assessment Penetration Testing (VAPT) Lab
- 5. SEM VIII: HCSC801: Application Security

Course Code	Course Name	Teachi (Hr	Credits Assigned							
	Applied Thermodynamics	L	Т	Р	L	Т	Р	Total		
		2		2	2		1	3		
25DCC12ME11		Examination Scheme								
25PCC15ME11			ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	30	100			
		Practical	20		30			50		

Pre-requisite Course Codes	- Funda	mentals of Thermodynamics						
	CO1	Explain the fundamental modes of heat transfer (conduction, convection, and radiation) and their governing laws.						
	CO2	Analyze steady-state and unsteady-state heat conduction in						
		different geometries including fins.						
	CO3 Understand the principles of free convection heat transfe							
Course Outcomes		including velocity and thermal boundary layers, and perform						
		thermal analysis.						
	CO4	Describe steam generators, boiler types, and performance.						
	CO5	Explain steam turbines, their classification, and efficiency						
		analysis.						
	CO6	Understand gas turbines, jet propulsion, and efficiency						
		improvements						

Module No.	Unit No.	Topics	Ref.	Hrs.
	1.1	Modes of Heat Transfer: Mechanism of conduction,	1-9	2
1		Convection and radiation heat transfer and Governing laws.		
		Generalized heat conduction equation in rectangular,		
		cylindrical and spherical coordinates (only equations for		
		cylindrical and spherical coordinates, no derivation).		
	1.2	Steady state heat conduction through plane wall, composite wall,	1-9	2
		cylinder, composite cylinder, sphere and composite sphere.		
		Thermal contact resistance. Critical radius of insulation in		
		cylinder and sphere		
2	2.1	Heat transfer from Extended Surfaces: Types of extended	1-9	2
		surfaces and its significance. Governing differential equation for		
		fin (Finite, Infinite, and Insulated tips) and its solution. Fin		
		efficiency and effectiveness.		
2	2.2	Unsteady state heat transfer: Lumped heat capacity Analysis.	1-9	2
		Applications of unsteady state heat transfer, Thermal time		
		constant.		

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3	3.1	Free Convection Heat Transfer: External Flow (Flow Over a	1-9	2
		Flat Plate), Internal Flow (Flow in Tubes and Pipes), Velocity		
		Boundary Layer and Thermal Boundary Layer, Thermal		
		Analysis for Constant Heat Flux and Constant Surface		
		Temperature		
	3.2	Forced Convection Heat Transfer: External Flow (Flow Over	1-9	2
		a Flat Plate), Internal Flow (Flow in Tubes and Pipes), Velocity		
		Boundary Layer and Thermal Boundary Layer, Thermal		
		Analysis for Constant Heat Flux and Constant Surface		
		Temperature		
	4.1	Heat Exchangers: Types of heat exchangers, Overall heat transfer	10-12	3
		coefficient, LMTD, Effectiveness, Effectiveness - Number of		
4		Transfer Unit (ε- NTU) method, Correction factor for multi pass (up		
		to 2 passes on shell and tube side) and cross flow heat exchanger		
5	5.1	Steam Turbine	10-12	3
		Basic of steam turbine, Classification, compounding of turbine,		
		Impulse turbine –velocity diagram, Condition for max efficiency		
		Reaction turbine, Numerical on Simple Impulse turbine (De-		
		Laval turbine) of single stage only. Degree of reaction, Parson's		
		turbine, Condition for maximum efficiency, Numerical on		
		Parson's turbine only.		
		Gas Turbines	10-12	4
		Applications of gas turbine, Actual Brayton cycle, open and closed		
		cycle gas turbine, methods to improve efficiency and specific		
6	6.1	output, open cycle with intercooling, reheat, and regeneration,		
		Effect of operating variable on thermal efficiency and work ratio		
	6.2	Jet Propulsion Engines		2
		Classification of jet propulsion engines, Thrust, Thrust power,	10-12	
		Propulsive efficiency and thermal efficiency.		26
		l'otal		26

Course Assessment:

PART A

THEORY

ISE-1: Quiz (10 marks) and Assignments (10 marks) Continuous pre-

defined rubrics-based evaluation

ISE-2: Quiz (10 marks) and Assignments (10 marks) Continuous pre-

defined rubrics-based evaluation

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

PART B

LABORATORY

Sr. No	List of Experiment	Hrs.
1	Study of Boilers, Boiler Mountings and Accessories	2
2	Investigating the performance (COP, tonnage, Refrigeration efficiency) of an open-air conditioning unit.	2
3	Assessment of the performance (COP, tonnage, Refrigeration efficiency) of an ice-plant test rig.	2
4	Evaluation of the performance of a cooling tower.	2
5	Study of performance and emissions characteristics of a Single Cylinder/Multi Cylinder, Two/Four stroke petrol Engine at constant Speed/Load.	2
6	Determination of frictional power and mechanical efficiency of the Multi- cylinder Petrol Engine by Morse test.	2
7	Study of performance and emissions characteristics of a Single Cylinder/ Multi Cylinder, Two/Four stroke petrol Engine at constant Speed along with heat balance sheet.	2
8	Study of performance and emissions characteristics of a Single Cylinder, Four- stroke Diesel Engine at constant speed (With Electrical/ Rope Brake Dynamometer) (Load Test) along with Heat Balance Sheet.	2
9	Industrial Visit to a Power Plant	2
	Total	18

Course Assessment:

Laboratory Work

ISE-1: Experiments 1-4 Continuous pre-defined rubrics-based evaluation for 20 marks. **ISE-2:** Remaining experiments. Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:

1. Fundamentals of Heat and Mass Transfer by F.P. Incropera and D P deWitt, Wiley India 3rd Edition.

- 2. Introduction to thermodynamics and Heat transfer by YunusACengel 2ndEdition, McGraw Hill.
- 3. Fundamentals of Heat and Mass Transfer, M. Thirumaleshwar, Pearson Education India, 2009.
- 4. Introduction to Heat Transfer, Som S. K ,PHI Publication.

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 5. Heat Transfer by P S Ghoshdastidar, 2nd Edition, Oxford University Press.
- 6. Heat and Mass Transfer, by R Rudramoorthy and L Malaysamy, 2nd Edition, PEARSON.
- 7. Heat Transfer by J P Holman, Mcgraw Hill.
- 8. Heat Transfer by S P Sukhatme, University Press.
- 9. Heat and Mass Transfer by PK Nag, TMH.
- 10. Power Plant Engineering P. K. Nag, McGraw Hill
- 11. Gas Turbines V. Ganesan, McGraw Hill
- 12. Applied Thermodynamics for Engineering Technologists T. D. Eastop & A. McConkey, Pearson

Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112/101/112101097/ - Heat and Mass Transfer, IIT Bombay

Course Code	Course Name	Teachi (Hr	Credits Assigned							
	Theory of Machines	L	Т	Р	L	Т	Р	Total		
		2		2	2		1	3		
25DCC12ME12		Examination Scheme								
25FUUISMEIZ			ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	30	100			
		Practical	20		30		50			

Pre-requisite	Engin	igineering Mechanics, Mechanics of Solids					
Course Codes							
	CO1	Demonstrate basic concepts of kinematics and identify various components of common mechanisms.					
	CO2	Analyse the velocity and acceleration of various links in motion.					
	CO3	Illustrate different types of cams, followers with different motions and develop profiles of cams for engineering applications.					
Course Outcomes	CO4	Illustrate various types of gears/ their terminology, areas of application analyse various parameters pertaining to spur gears and gear trains.					
	CO5	Demonstrate basic concepts pertaining to balancing/vibrations in evaluation of simple machine components.					
	CO6	Analyse clutches, brakes and dynamometers for evaluation of braking force and belt drive for power transmission.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Basic Concepts: Structure, Machine, Mechanism,	1-2	1
		Kinematic link & its types, Kinematic pairs, Types of		
		constrained motions, Types of Kinematic pairs, Kinematic		
		chains, Types of joints.		
	1.2	Degree of freedom (mobility): Kutzbach mobility criterion,	1-2	1
		Grűbler's criterion & its limitations		
	1.3	Inversions: Four bar chain and its inversions, Grashoff's	1-2	1
		law, Slider crank chain and its inversions, Double slider		
		crank chain and its inversions		
2	2.1	Velocity Analysis of Mechanisms (mechanisms up to 6	1-2	2
		links) Velocity analysis by instantaneous centre of rotation		
		method (Graphical approach), Velocity analysis by relative		
		velocity method (Graphical approach)		
	2.2	Acceleration Analysis of Mechanisms (mechanisms up to	1-2	2
		6 links) Acceleration analysis by relative method including		
		pairs involving Coriolis acceleration (Graphical approach)		
3	3.1	Cam and Follower Mechanism	1-2	1

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Cam and its Classification based on shape, follower movement and manner of constraint of follower: Followers		
and its Classification based on shape, movement, and		
location of line of movement; Cam and follower terminology	1.0	
3.2 Motions of the follower: SHM, Constant acceleration and deceleration (parabolic), Constant velocity, Cycloidal;	1-2	1
3.3 Layout of cam profile for specified displacement characteristics for cams with translating and oscillating followers	1-2	2
4 4.1 Gears: Introduction, Types of gears and applications, Gear terminology, Condition for constant velocity ratio–conjugate profiles, profiles used in gears. Interference of involute teeth, methods of preventing interferences through undercutting, length of path of contact and contact ratio, no of teeth to avoid interference	1-2	3
4.2 Gear Trains: Simple, compound, planetary and epicyclic gear trains (with numerical)	1-2	2
5 5.1 Balancing: Introduction. Rotary masses: several masses in same plane, several masses in different planes. (No numerical problems) Balancing of locomotives- Variation of Tractive Effort, Swaying Couple and Hammer blow, The concept of primary and secondary balancing (No numerical problems)	1-2	3
5.2 Vibrations: Introduction-free vibrations; longitudinal, transverse and torsional vibrations, critical or whirling speed of shaft. Torsional vibrations of two rotor system - torsionally equivalent shaft.	1-2	2
6 6.1 Clutches, Brakes and Dynamometers: Study and analysis of single plate clutch, multiple plate clutches and cone clutches. Types of brakes. viz. block and shoe brakes, band brake, band and block brakes Types of dynamometers, classification, Prony brake, Rope brake belt transmission dynamometers	1-2	3
6.2 Belts: Introduction, Types and all other fundamentals of belting, Dynamic analysis –belt tensions, condition of maximum power transmission	1-2	2
	Fotal	26

Course Assessment:

Theory: ISE-1:

Activity: Quiz on first three modules (20 marks) Continuous pre-defined rubrics-based evaluation for 20 marks. ISE-2: Activity: Quiz on last three modules (20 marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Practical:

Sr. No.	PART A (Experiments) (Minimum 5)	Hours					
1	Experiments on Gyroscope						
2	Experiments on Governors- Porter Governor, Hartnell Governor						
3	Determine natural frequency of Simple Pendulum						
4	Determine natural frequency of Compound Pendulum						
5	Determine natural frequency and nodal points for single rotor and two-	10					
	rotor vibratory system						
6	Determine whirling speed of shaft						
7	Experimental balancing of single and multi-rotor system						
	PART B (Graphical Solutions)						
1	Analysis of Velocity and Acceleration of Mechanisms	3					
2	Development of CAM Profile for specific follower motion	3					
	PART C (Simulation)						
1	Motion Analysis of Mechanisms using Solidworks	2					
2	Vibration analysis of mechanical system using	2					
2	MATLAB/SCILAB/GNU Octave						
	Total	20					

Course Assessment:

Laboratory work:

ISE-1 (20 marks)

Submission of the observations made during the lab performance for three Experiments (Part A) covered during this assessment duration Experiments covered during this assessment duration (10 marks) Submission of graphical solutions for Part B – Assignment 1 and 2 (10 marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

ISE-2 (30 marks)

Submission of the observations made during the lab performance for the remaining 2 experiments (Part A) covered during this assessment duration. (10 marks).

Submission of Part C: Motion Analysis (10 Marks) and Vibration Analysis (10 Marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

Text Books:

- 1. S.S. Ratan, "Theory of Machines", Tata McGraw Hill
- 2. Ghosh and A.K. Mallik, "Theory of Mechanisms and Machines", East-West Press

Reference Books:

- 1. J.J. Uicker, G.R. Pennock, and J.E. Shigley, "Theory of Machines and Mechanism", Oxford Higher Education
- 2. P.L. Ballaney, "Theory of Machines", Khanna Publishers
- 3. M.A. Mostafa, "Mechanics of Machinery", CRC Press
- 4. R.L. Norton, "Kinematics and Dynamics of Machinery", McGraw Hill
- 5. A.G. Erdman, G.N. Sander, and S. Kota, "Mechanism Design: Analysis and Synthesis Vol I", Pearson

Links for online NPTEL/SWAYAM courses:

- 1. https://nptel.ac.in/courses/112/105/112105268/
- 2. http://www.nptelvideos.in/2012/12/kinematics-of-machines.html

AICTE Prescribed Textbook:

Theory of Machines and Mechanisms, Prof. G C Mohan Kumar

(https://ekumbh.aicte-india.org/allbook.php#)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						I	
		L	Т	Р	L	Т	P	Total	
25PCC13ME13	Metrology and Quality Engineering	2			2		-	2	
		Examination Scheme							
			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	30		100	

Pre-requisite Course Codes	None						
	CO1	Understand the overall concept of metrology including standards of measurements, limits, fits, tolerances and gauge design.					
	CO2	Demonstrate knowledge of comparators, principle of interference and surface texture measurement.					
Course Outcomes	CO3	Understand the methods to measure screw thread and gear parameters.					
	CO4	Understand and implement the concept of quality					
	CO5	Identify and use proper quality tools in various manufacturing or service problems.					
	CO6	Comprehend and apply quality standards in different situations.					

Module No.	Topics	Ref	Hrs.
1	Introduction to Metrology: Definition and Scope. Accuracy & Precision. Standards and characteristics of measurements. Limits, fits and Tolerances: Basic definitions, Taylor's principle, Hole- basis and shaft-basis systems, Design of Go & No-Go gauges for hole and shaft using tolerance disposition diagram.	1, 2	05
2	Comparators: Understanding of features and operation of mechanical, optical, and pneumatic comparators, advantages, limitations, and field of applications. Principles of interference, concept of flatness, flatness testing, optical flats. Surface texture measurement: Importance of surface conditions, roughness and waviness, surface roughness standards specifying surface roughness parameters - Ra, Ry, Rz, RMS value etc., Different types of surface roughness measuring instruments and symbols.	1, 2	05
3	Screw Thread measurement: Two wire and three wire methods, floating carriage micrometer. Gear measurement: Gear tooth comparator, measurement using rollers and Parkinson's Tester.	1, 2	02
4	Quality: Definition, Evolution of quality, Dimensions of quality planning, Principles of TQM, setup policy and objectives of quality control, quality of design and quality of conformance, compromise between quality & cost, Costs of quality	3	05

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

<u>ISE-1:</u>	Quiz or One assignment each on module 1, 2 and 3 (20 Marks)
	Continuous pre-defined rubrics-based evaluation for 20 marks.
ISE-2:	Quiz or One assignment each on module 4, 5 and 6 or Presentations by students in
	groups of 3 on recent topics related to metrology and quality engineering (20
	Marks)
	Continuous pre-defined rubrics-based evaluation for 20 marks.
MSE:	90 minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 minutes of written examination based on the rest of the syllabus covered after
	MSE (30 marks)

Reference Books:

- 1. Engineering. Metrology, I.C. Gupta, Dhanpat Rai Publications.
- 2. Engineering. Metrology, 22nd edition, R. K. Jain, Khanna Publisher, (2022).
- 3. Statistical quality Control, 2nd edition, Mahajan M., Dhanpat Rai & Sons, Delhi (2015).
- 4. Quality Control, 3rd edition, D. H. Besterfield, Pearson Education (2012).
- 5. Understanding and Implementing ISO 9000 and ISO Standards, 2nd edition, David L. Goetsch, Stanley Davis, Prentice Hall.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	CAD/CAM and FEA	L	Т	Р	L	Т	Р	Total	
25PCC13ME14		2	1		2	1		3	
		Examination Scheme							
			ISE1	MSE	ISE2	ESE	Т	`otal	
		Theory	20	30	20	30	100		
		Tutorial	20		30		50		

Pre-requisite Course	Basic	Basics Mathematics.			
Codes					
	CO1	Use of computer graphics in design.			
	CO2	Understand Fundamental Concepts geometric			
		transformation.			
	CO3	Apply parametric equations for curve and surface			
Course Outcomes		generation.			
	CO4	Understand the fundamental principles, components,			
		and working of CNC machines.			
	CO5	Implement appropriate CNC codes for specific tasks			
		and analyse real-life engineering problems using FEA.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to CAD:	1-8	
		Need and Utility of CAD systems in industry,		
		Fundamentals of computer graphics & hardware, Types		
		of Geometric Modelling,		6
		Raster Graphics: line and circle algorithm.		
2	2.1	Geometric Transformation: Homogenous Transformation	1-8	
		(2D Translation, scaling, Reflection, Rotation)		
	2.2	Window Viewport and Clipping.	1-8	6
3	3.1	Curves And Surfaces:	1-8	
		Cubic spines Bezier curves & B- spines (No Numerical).		
	3.2	Product data exchanges formats (STEP, IGES).	1-8	
				4
4	4.1	CNC Machines:	1-8	
		Fundamental elements of CNC, Benefits of CNC, Computer		
		control concepts, Data processing units.		4
		Basics of control systems:		
		Motion controller, Interpolation-Linear & Circular, Positioning		
		& contouring control loops, Incremental & Absolute system,		
		DNC & CNC systems and Adaptive control system.		
		CNC Hardware Basics:		
		CNC drives, Spindle design, Actuation and Feedback devices.		

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

5	5.1	CNC Programming(Turning & Machining): G & M code, Tool length, nose radius & Diameter compensation, Canned cycles, Looping Jumping Subroutines Macros, Parametric programming, Turning & Machining centre programming.	1-8	6
	5.2	FEA Software: General Procedure & Application.		
			Total	26

Tutorial:

Sr. No.	Tutorial Details	Hours
1	Line DDA algorithm numerical.	01
2	Bresenham's Line Algorithm.	01
3	Circle Algorithm.	01
4	2 D transformation using translation and Rotation matrix.	01
5	Compound 2 D transformation.	01
6	Bezier Curve.	01
7	Turning Centre (Sinumerik)Programming.	01
8	Machining Centre (Fanuc) Programming.	01
	Total Hours	08

Course Assessment:

Theory:

<u>ISE-1:</u>

Activity: Quizzes/Assignment on first two modules (20 Marks)

<u>ISE-2:</u>

Activity: Quizzes/Assignment on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial:

ISE-1:

First Four tutorials (20 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks.

<u>ISE-2:</u>

Next four tutorials (30 marks)

Continuous pre-defined rubrics-based evaluation for 30 marks

Recommended Books:

1. CAD/CAM by Groover and Zimmers

2. CAD Principles and Applications by Barr, Krimger and Lazaer

3. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", Mc Graw Hill Book Co. Singapore, 1989.

4. Donald Hearn and M. Pauline Baker "Computer Graphics", Prentice Hall, Inc., 1992.

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- 5. Foley, Wan Dam, Feiner and Hughes Computer graphics principles & practices, Pearson Education 2003.
- 6. CAD / CAM by P.N. Rao (Tata-Mcgraw-Hill) 2
- 7. Computer Graphics by Hearn and Baker (PHI)
- 8. Mastering CAD CAM by Ibarahim Zeid (Tata-Mcgraw-Hill) 4

Links for online NPTEL/SWAYAM courses:

- 1. https://nptel.ac.in/courses/112/102/112102101/
- 2. https://nptel.ac.in/courses/106/102/106102065/
- 3. https://nptel.ac.in/courses/112/102/112102103/
- 4. https://nptel.ac.in/courses/112/105/112105211/

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teachi (Hr	Cı	Credits Assigned				
		L	Т	Р	L	Т	Р	Total
	FEA and CFD Lab			2			1	1
25DCC12ME15		Examination Scheme						
25PCC15WIE15			ISE1	MSE	ISE2	ESE	Т	otal
		Theory						
		Practical	20		30			50

Pre-requisite Course	CAD Modelling.				
Codes					
	CO1	Apply static structural analysis techniques to evaluate and interpret the behaviour of structures under various conditions.			
	CO2	Apply structural dynamic analysis techniques to evaluate and interpret the response of structures under dynamic loading conditions.			
Course Outcomes	CO3	Apply thermal analysis techniques to evaluate and interpret heat transfer and temperature distribution in engineering systems.			
	CO4	Apply steady flow analysis techniques to evaluate and interpret fluid behaviour in engineering systems under steady conditions.			
	CO5	Apply turbulence modelling techniques to analyse and predict fluid flow behaviour in engineering systems.			

Sr. No	Topics	Hr
1	Problem for Static structural analysis.	6
2	Problem for Dynamic Structural analysis.	5
3	Problem for Thermal Analysis.	5
4	Problem for Steady flow analysis.	6
5	Problem for Turbulence Modelling.	4
	Total	26

Course Assessment:

Laboratory: <u>ISE-1: (20 Marks)</u> Experiments 1 to 2 Continuous pre-defined rubrics-based evaluation for 20 marks. <u>ISE-2: (30 Marks)</u> Experiments 3 to 5

- i. Continuous pre-defined rubrics-based evaluation for 20 marks.
- ii. Lab interaction (10 marks).

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

1. Programming the Finite Element Method, I M Smith, D V Griffiths and Margetts WILEY Publications.

2. The Finite Element Method: Theory, Implementation, and Applications, Larson, Mats G., Bengzon, Fredrik, Springer

3. Introduction to Finite Element Analysis and Design by N. H. Kim, B. V. Sankar, and A. V. Kumar by Wiley publication

4. Finite Element analysis using ANSYS by PaletiSrinivas, Krishna Chaitanya, Rajesh Kumar Detti, PHI Publication.

5. Finite Element Analysis Theory and Application With ANSYS by Saeed Moaveni, Pearson Publication.

6. Introduction to Finite Element Analysis Using MATLAB and Abaqus By Amar Khennane, CRC Press publication

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
	Supply Chain Management	L	Т	Р	L	Т	Р	Total
		2	1		2	1	-	3
25DEC12ME11		Examination Scheme						
25FECI5WIEII			ISE1	MSE	ISE2	ESE	,	Total
		Theory	20	30	20	30	100	
		Tutorial	20		30			50

Pre-requisite Course Codes	None	
	CO1	Demonstrate today's business environment and importance of Logistics and Supply Chain Management
	~~~	Identify the drivers of supply chain performance and uncertainty
	CO2	in supply chain management.
	CO3	Understand the techniques of inventory management and rank
Course Outcomes		the items using inventory management technique
Course Outcomes	CO4	Understand strategies and techniques to minimize overall
		logistics cost
	COS	Understand the role of digitization in supply chain management
	005	leading to sustainability
	CO6	Understand various supply chain sustainable and productivity
	0.00	terminology

Module No.	Topics	Ref	Hrs.
1	Objectives of a Supply Chain Management, Stages of Supply chain, Value Chain Process, Cycle view of Supply Chain Process, Push Pull in SC, Design Phases stage, logistics & SCM	1-4	04
2	Supply Chain Drivers /decisions and obstacles, Supply chain strategies & strategic fit.	1-4	04
3	Definition of Inventory, Inventory types, EOQ Model and Buffer Stock, Replenishment systems (Q and P system), Inventory Control- ABC Analysis, Numerical problems on ABC analysis, VED Analysis,	1-4	04
4	Bullwhip effect and measures, Balance delay, SCOR Model, Factors influencing distribution network design, Design options for distribution network	1-4	05
5	IT Framework and sustainable Supply Chain management, Transport Management System (TMS), Warehouse Management System (WMS). ERP (SAP) and integration of technology.	1-4	05
6	Value Stream Mapping (VSM), Order fill rate, Product fill rate, Order visibility, Lead time, Takt time, Logistics Vs Reverse Logistics, Third Party – Fourth Party Logistics and integration, Green SC	1-4	04
	Total		26



#### Society of St. Francis Xavier, Pilar's

## Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### Course Assessment:

#### Theory:

<u>ISE-1:</u>	Quiz (20 Marks)
ISE-2:	Quiz (20 Marks)
MSE:	90 Minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 Minutes of written examination based on the rest of the syllabus covered after
	MSE (30 marks)

#### <u>Tutorial</u>

ISE-1

One assignment each on module 1, 2 and 3. Continuous pre-defined rubrics-based evaluation for 20 marks.

#### <u>ISE-2</u>

One assignment each on module 4, 5 and 6 followed by Presentation by groups based on recent updates on SC.

#### **Reference Books:**

- 1. Sunil Chopra, P. Meindl, "Supply Chain Management", 6th Edition 2016, Pearson Education Asia.
- 2. D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi, and Ravi Shankar, "Designing and Managing the Supply Chain concepts, Strategies and Case studies", 3rd Edition, Tata McGraw Hill, New Delhi, 2008
- 3. Rahul V Altekar, "Supply Chain Management: Concepts and cases", Edition 2009, PHI, ISBN: 9788120328594. Quality Control, 3rd edition, D. H. Besterfield, Pearson Education (2012).
- 4. R.P. Mohanty, S.G. Deshmukh, "Essentials of Supply Chain management", 1st Edition 2004, Jaico Publishing House.



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits A			
		L	Т	Р	L	Т	Р	Total
	Costing and Cost	2	1		2	1		3
25PEC13ME12	Control	Examination Scheme						
		ISE1 MSE ISE2 ES			ESI	Ŧ	Total	
		Theory	20	30	20	30		100
		Tutorial	20		30			50

Pre-requisite Course Codes		None			
	CO1	Explain types of costs, cost control fundamentals, and the role of cost engineers.			
	CO2	Implement job, batch, process, and activity-based costing in manufacturing			
Course Outcomes	CO3	Perform break-even analysis, standard costing, and cost estimation techniques.			
	CO4	Apply budgeting, marginal costing, value engineering, and lean techniques.			
	CO5	Use make-or-buy analysis, inventory costing, and cost-volume-profit analysis.			
	CO6	Analyze case studies and apply tools like Tally and Excel for cost management.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	<b>Overview of Costing</b> : Definition, objectives, and importance	1-8	4
		in manufacturing, Types of Costs: Fixed, variable, direct,		
		indirect, and sunk costs. Cost Control Fundamentals:		
		Principles and significance in engineering projects, Role of		
		Cost Engineers: Key competencies and responsibilities.		
2	2.1	<b>Cost Control vs. Cost Reduction</b> : Meaning, differences, and	1-8	3
		importance, Role of Costing in Industrial Engineering:		
		Applications in production planning and control.		
	2.2	Costing Methods in Manufacturing:	1-8	2
		Job Costing, Batch Costing, Process Costing, Activity-Based		
		Costing (ABC).		
3	3.1	Cost Estimation Techniques in Production Engineering:	1-8	4
		Elements of Cost: Material cost, labor cost, and overheads,		
		Factors affecting cost estimation, Break-even Analysis:		
		Determining the minimum production quantity for		
		profitability, Standard Costing: Concept, advantages, and		
		variance analysis.		



#### Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	4.1	<b>Cost Control Techniques in Industry:</b> Budgeting and Cost Control: Definition, types of budgets, budgetary control, Marginal Costing: Concept and decision-making applications.	1-8	3
	4.2	<ul> <li>Value Engineering: Reducing cost without affecting quality and performance.</li> <li>Waste Reduction and Cost Savings: Lean manufacturing techniques.</li> </ul>	1-8	2
5	5.1	<b>Cost Analysis for Decision Making:</b> Make-or-Buy Decisions: Cost-based decision-making for outsourcing. Inventory Costing: EOQ, ABC analysis, and JIT in cost reduction. Depreciation and Its Impact on Costing: Different depreciation methods. Cost-Volume-Profit (CVP) Analysis: Understanding cost behavior and profitability.	1-8	4
6	6.1	Industrial Case Studies and Costing Software: Case Studies on Cost Control in Manufacturing: Real-world industry examples. Introduction to Costing Software: Tally, and Excel for cost management. Future Trends in Costing and Cost Control: Digital transformation in industrial costing.	1-8	4
Total		1	1	26

#### Course Assessment:

#### Theory:

ISE-1: Activity: Assignments , Quiz (20 marks)

ISE-2: Activity: Assignments, Quiz (20 marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

#### <u>Tutorial:</u>

#### **ISE-1:**

Examples/Assignments on Module 1, Module 2 and Module 3 Continuous pre-defined rubrics-based evaluation for 20 marks.

#### <u>ISE-2:</u>

Examples/Assignments on Module 4, Module 5 and Module 6 Continuous pre-defined rubrics-based evaluation for 30 marks.

#### **Recommended Books:**

#### **Text Books:**

- 1. M.L. Mehta & S.P. Gupta Cost Accounting: Principles and Practice (Sultan Chand & Sons)
- 2. Charles T. Horngren, Srikant M. Datar, Madhav Rajan Cost Accounting: A Managerial Emphasis (Pearson)
- 3. R. Kesavan, C. Elanchezhian, B. Vijaya Ramnath Engineering Economics and Costing (Laxmi Publications)
- 4. V.K. Saxena & C.D. Vashist Advanced Cost and Management Accounting (Sultan Chand & Sons)

#### **Reference Books**:

- 5. Colin Drury Management and Cost Accounting (Cengage Learning)
- 6. Jawaharlal & Seema Srivastava Cost Accounting (McGraw Hill)
- 7. Bhabatosh Banerjee Cost Accounting: Theory and Practice (Prentice Hall India)
- 8. M.N. Arora A Textbook of Cost and Management Accounting (Vikas Publishing)

#### **AICTE Prescribed Textbook:**

Book Name- Estimation, Costing & Valuation



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Author Name-Dr. Sandeep Panchal (<u>https://ekumbh.aicte-india.org/allbook.php#</u>)



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned					
	Mould and Metal Forming Technology	L	Т	Р	L	Т	P	Total		
		2	1		2	1	-	3		
25DEC12ME12		Examination Scheme								
25FECI5WIE15			ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	30	100			
		Tutorial	20		30			50		

Pre-requisite Course Codes		
	Learner	will be able to
	CO1	Understand the different types of casting Process.
Common Oracle and a	CO2	Understand the concept of different metal forming process.
Course Outcomes	CO3	Approach metal forming processes both analytically and
		numerically
	CO4	Design metal forming processes
	CO5	Develop approaches and solutions to analyze metal
		forming processes and the associated problems and flaws.

Module	Topics	Ref.	Hrs.
No.			
1	Sand Casting of Metals Mould materials: Moulding sand; Constituents of moulding sand and its property requirements Design and manufacture of Patterns and Cores: Pattern allowances, Types of patterns, Core print, Core Use of Gating system, Pouring basin, Sprue, Runners and Ingates. Use of chills, padding and risering. Melting practices: Cupola, Arc and Induction furnaces.	8	5
2	Detects in cast components         Introduction to Metal Forming:         Metallurgical aspects of metal forming, slip, twinning mechanics of plastic deformation, effects of temperature, strain rate, microstructure and friction in metal forming-yield criteria and their significance, Classification of Metal Forming Processes, Advantages and Limitations, Stress strain relations in elastic and plastic deformation, concept of flow stresses, Hot and Cold Working Processes.	1-7	4
3	<b>Rolling:</b> Introduction and Classification, Types of Rolling Mills, Forces and Geometrical Relationships in Rolling, Calculation of Rolling Load, Defects in Rolled Products.	2-7	4



#### Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	<b>Forging:</b> Introduction and Classification, operation and principle of Forging Processes and Equipment, Methods of forging, Open and Close Die Forging Processes, Defects in forged products.	2-7	4
5	Extrusion: Introduction and Classification, Extrusion Equipment, Extrusion of components including Seamless Pipes and Tubes. Extrusion of pipes by cold working Drawing: Introduction and Classification, Wire Drawing, Rod Drawing, Tube Drawing, Deep Drawing,	2-7	5
6	<b>Sheet Metal Forming:</b> Principle, working and application of the following processes: spinning, stretch forming, plate, V and edge bending, Ironing, Roll Bending, Metal Spinning, explosive forming, Hydro forming, electro hydraulic forming, and magnetic pulse forming.	2-7	4
	Total		26

#### Theory:

ISE-1:	Quiz (20 Marks) based on 50% syllabus
<b>ISE-2:</b>	Quiz (20 Marks) based on remaining syllabus
MSE:	90 Minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 Minutes of written examination based on the rest of the syllabus covered after MSE (30 marks)

#### <u>Tutorial</u>

ISE: ISE-1 (20 marks)

One assignment each on module 1, 2 and 3. Continuous pre-defined rubrics-based evaluation for 20 marks.

#### ISE-2 (30 marks)

One assignment each on module 4, 5 and 6 followed by Presentation by groups based on recent updates on Metal forming.

#### **Recommended Books:**

- 1. Lin D Balint M Pietrzyk, Microstructure Evolution in Metal Forming Processes 1st Edition
- 2. Amitabha Ghosh and Asok Kumar Mallick, Manufacturing Science, Affiliated East-West Press
- 3. Christian Brecher and Ozdemir, Advances in Production Technology, Springer Publications
- 4. P.C.Sharma, A Text Book on Production Engineering, S.Chand Publications
- 5. P. N. Rao, "Manufacturing Technology", Tata McGraw Hill
- 6. Aviter, "Fundamental of Metal Working", McGraw Hill Publisher
- 7. Dieter, "Mechanical Metallurgy"
- 8. Principles of Metal casting by Mahi Sahoo.



Society of St. Francis Xavier, Pilar's

## Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Links for online NPTEL/SWAYAM courses: https://nptel.ac.in/courses/112/107/112107250/ - Principles of Metal Forming Technology, IIT Roorkee https://nptel.ac.in/courses/112/106/112106153/ - Forming, IIT Madras



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2	1		2	1		3
25DEC12ME14			Examination Scheme					
25PECI5ME14	Additive		ISE1	MSE	ISE2	ESE	T	otal
	Manufacturing	Theory	20	30	20	30	100	
		Tutorial	20		30			50

Pre-requisite Course	Basic manufacturing.					
	CO1	Illustrate understanding of various cost-effective alternatives for manufacturing products and select the feasible additive manufacturing for specific technical application				
	CO2	Understand and apply the principles of liquid-based rapid prototyping and tooling processes to build and generate data for additive manufacturing of various objects.				
Course Outcomes	CO3	Understand and apply the principles of solid-based rapid prototyping systems for efficient additive manufacturing and product development.				
	CO4	Understand and apply the principles of powder-based additive manufacturing systems for efficient prototyping and production of complex geometries.				
	CO5	Understand and apply reverse engineering techniques in additive manufacturing to reconstruct, modify, and optimize existing designs for manufacturing and proteturing				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to additive manufacturing, its historical development, advantages. Classification of additive manufacturing process, Advantages & Disadvantages, Applications to various fields, Rapid Tooling, Design Consideration.	1-8	6
	2.1	Liquid-Based Systems:		
2		Stereolithography (SLA): Photopolymerization process,	1-8	6
		Working Principle, Material used, Advantages and		
		limitation, Application		
	2.2	Solid ground curing: Working Principle, Material used,		
		Advantages and limitation, Application.		
	3.1	Solid Based Rapid Prototyping Systems:		



#### Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3		LOM (Laminated Object Manufacturing) System: Working		4
		Principle, Material used ,Advantages and limitation,	1-8	
		Application.		
	3.2	FDM (Fused Deposition Modelling) System: Working		
		Principle, Material used, Advantages and limitation,		
		Application.		
	4.1	Powder Based Systems:		
4		SLS (Selective Laser Sintering): Working Principle,		
		Material used, Advantages and limitation, Application.		
	4.2	(3DP) Three-Dimensional Printing: Working Principle,	1-8	6
		Material used, Advantages and limitation, Application.		
	4.3	(EBM) Electron Beam Melting: Working Principle,		
		Material used, Advantages and limitation, Application.		
5	5.1	Reverse Engineering	1-8	4
		Introduction to Digitizing Methods, Contact type and Non-		
		contact type, Brief introduction to the types of medical		
		imaging.		
		Virtual reality: Definition, features of VR, Technologies		
		used in VR, Introduction to Augmented reality.		
			Total	26

#### **Tutorial:**

Sr. No.	Tutorial Details	Hours			
1	Preprocessing of 3d Print Component.	01			
2	3D Printing of Component.	01			
3	Case study on SLA.	01			
4	Case study on LOM.	01			
5	Case study on FDM.	01			
6	Case study on SLS.	01			
7	Case study on 3DP.	01			
8	Case study on EBM.	01			
	Total Hours				

#### **Course Assessment:**

Theory:

<u>ISE-1:</u>

Activity: Quizzes/Assignment on first two modules (20 Marks)

**ISE-2:** 

Activity: Quizzes/Assignment on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### <u>Tutorial:</u> <u>ISE-1</u> First Four tutorials (20 marks) Continuous pre-defined rubrics-based evaluation for 20 marks. <u>ISE-2</u> Next four tutorials (30 marks)

Continuous pre-defined rubrics-based evaluation for 30 marks

#### **Recommended Books:**

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid Prototyping Principles and Applications",
- 2. World Publishing Co. Pte. Ltd.
- 3. Gibson, D.W. Rosen, and B. Stucker, "Additive Manufacturing Technologies Rapid
- 4. Prototyping to Direct Digital Manufacturing", 2010, Springer Inc.
- 5. Ali Kamrani, EmadAbouel Nasr, "Rapid Prototyping Theory and Practice", 2006, Springer
- 6. RafiqNoorani, Rapid Prototyping: Principles and Applications, John Wiley & Sons, Inc., 2006, ISBN 0-471-73001-7
  - 7. James O. Hamblen, and Michael D. Furman, "Rapid Prototyping of Digital Systems", Kluwer Academic Publishers.
  - 8. Kenneth G. Cooper, "Rapid Prototyping Technology Selection and Application", 2001,

Marcel Dekker Inc, New York.

#### Links for online NPTEL/SWAYAM courses:

- 1. <u>https://onlinecourses.nptel.ac.in/noc24_me138/preview</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_me74/preview</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc22_me130/preview</u>
- 4. https://onlinecourses.nptel.ac.in/noc25_mm02/preview



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned				
	Additive Manufacturing Lab	L	Т	Р	L	Т	Р	Total		
				2			1	1		
25DEC12ME15		Examination Scheme								
25FECI5WIE15			ISE1	MSE	ISE2	ESE	Т	otal		
		Theory								
		Practical	20		30		50			

Pre-requisite Course	CAD Modelling.	
Codes		
	CO1	Illustrate basic understanding of types of CAD model creation.
	CO2	Apply segmentation techniques in Slicer's Segment Editor module to prepare 3D models for printing.
<b>Course Outcomes</b>	CO3	Develop 3D model using available 2D image.
	CO4	Apply various design considerations to enhance the
		quality and functionality of 3D component printing.
	CO5	Apply additive manufacturing processes to develop a
		physical 3D mechanical structure.

Sr. No	Topics	Hr
1	Modelling of a component using 3D modelling	4
	software	
2	Segmentation in Slicer's Segment Editor	6
	module for the purpose of 3D printing.	
3	Creation of 3D model from 2D images using	6
	any image processing software and printing it.	
	(3D Slicer open source) (Application: Any	
	engineering or medical part.)	
4	Application of various design considerations in	4
	3D component printing.	
5	Development of physical 3D mechanical	6
	structure using any one of the Additive	
	manufacturing processes	
Total		

#### **Course Assessment:**

Laboratory: <u>ISE-1: (20 Marks)</u> Experiments 1 to 2 Continuous pre-defined rubrics-based evaluation for 20 marks. <u>ISE-2:</u> (30 Marks) Experiments 3 to 5


Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

- i. Continuous pre-defined rubrics-based evaluation for 20 marks.
- ii. Lab interaction (10 marks).

#### **Recommended Books:**

- 1. Machine Drawing by N.D. Bhatt.
- 2. A textbook of Machine Drawing by Laxminarayan and M.L.Mathur, Jain brothers Delhi
- 3. Machine Drawing by K.I. Narayana, P. Kannaiah, K. Venkata Reddy

 Medical Modelling - The Application of Advanced Design and Rapid Prototyping Techniques in Medicine, Richard Bibb, Dominic Eggbeer and Abby Paterson, Woodhead Publishing Series in Biomaterials: Number 91, Elsevier Ltd
 Biomaterials, artificial organs and tissue engineering, Edited by Larry L. Hench and Julian R. Jones, Woodhead Publishing and Maney Publishing, CRC Press 2005

6. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, I. Gibson l D. W. Rosen l B. Stucker, Springer Publication.



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credit Assigned				
		L	Т	P	L	T	Р	Total	
25PEC13ME21	Automation and Control	2	1		2	1		3	
			ISE1	MSE	ISE2	E	ESE	Total	
		Theory	20	30	20		30	100	
		Tutorial	20		30			50	

Pre-requisite		
Course Codes		
Course Code	CO1	Illustrate the basic concept of Industrial automation in
		different manufacturing set-ups.
	CO2	Design and Develop Pneumatic Circuits
	CO3	Design and Develop Hydraulic Circuits

Modules	Topics	Ref.	Hrs.
1	Automation Definition; Automation in production systems; Automation principles and strategies; Basic elements of an automated system; Advanced automation functions; Levels of automation; Types of automation; Benefits and Impact of Automation in Manufacturing and Process Industries. Architecture of Industrial Automation Systems.	1	4
2	Pneumatic control systems Overview of different types of valves and Actuators in Pneumatics, their applications and their ISO symbols. Design of Pneumatic circuits using Cascade method and Shift register method (up to 3 cylinders). applications of Timers and Counters and concept of Flag and latching.	2, 3	5
3	Design of Electro-Pneumatic Circuits using single solenoid and double solenoid valves with and without grouping. Design of Pneumatic circuits using PLC Control (ladder programming only and up to 3 cylinders) with	4	5
4	Hydraulic Control System : Overview of different types of valves, Actuators and Accumulators used in Oil hydraulic circuits, their applications and their ISO symbols. Basic hydraulic circuits involving linear and rotary actuators (No sequential circuits). Fundamental concepts of digital and servo hydraulic controls. Comparison between proportional, digital and servo hydraulic control systems.	5	4
5	Fundamentals of Control System Control system concepts, classification of control systems, Mathematical representation of system equations, response characteristics of components and systems through classical solution.	6	4
6	Frequency response analysis, polar plots, Testing of System's stability using Routh's criteria, Bode plots, Nyquist plot and Root locus method of analysis.	6	4
	TOTAL		26



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### **Course Assessment :**

Theory :	
<u>ISĚ-1:</u>	Quiz (20 Marks)
<u>ISE-2:</u>	Quiz (20 Marks)
MSE:	90 minutes of written examination based on 50% syllabus (30 Marks)
<u>ESE:</u>	90 minutes of written examination based on the rest of the syllabus covered after MSE (30 marks)
Tutorial :	
<u>ISE-1:</u>	Assignment of first 3 modules (20 Marks)
<u>ISE-2:</u>	Assignment on last 3 modules (20 Marks)

#### **Recommended Books:**

- 1. Groover, M.P. "Automation, Production Systems, and Computer-Integrated Manufacturing", 4th Edition, Pearson, 2015.
- 2. Festo Didactic, "Fundamentals of Pneumatics", Festo Training Manual.

Simulation of System Response on Matlab (10 marks)

- 3. Andrew Parr, "Pneumatics and Hydraulics: A Technician's and Engineer's Guide", 3rd Edition, Butterworth-Heinemann, 2011.
- 4. Festo Didactic, "Electro-Pneumatics Basic Level", Festo Training Manual.
- 5. Eaton (Vickers), "Industrial Hydraulics Manual", Latest Edition, Eaton Hydraulics.
- 6. Katsuhiko Ogata, "Modern Control Engineering", 5th Edition, Pearson, 2010.



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2	1		2	1		3
25DEC12ME22	Finite Element	Examination Scheme						
25PECI5WIE22			ISE1	MSE	ISE2	ESE	T	otal
	Analysis	Theory	20	30	20	30	1	00
		Tutorial	20		30			50

Pre-requisite Course Codes	Basic	CAD, Design, Mathematics.
	CO1	Solve differential equations using weighted residual methods.
	CO2	Develop the finite element equations to model engineering
		problems governed by second order differential equations.
	CO3	Apply the basic finite element formulation techniques to solve
<b>Course Outcomes</b>		engineering problems by using one dimensional elements.
	CO4	Apply the basic finite element formulation techniques to solve
		engineering problems by using two dimensional elements.
	CO5	Apply the basic finite element formulation techniques to find
		natural frequency of single degree of vibration system.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
	1.1	Introduction to FEA: Introduction to FEM,		
	1.2	Mathematical Modelling of field problems in engineering,		
		Governing Differential equations, primary/secondary variables,		
1		boundary conditions types-essential/natural etc.	18	1
1	1.3	Discrete and Continuous Models.	1-0	т
	1.4	Definitions of various terms used in FEM like element, order of the		
		element, internal and external node/s, degree of freedom.		
	2.1	Approximate solution of differential equations, residual (Galerkin,		
2		Subdomain method, Rayleigh-Ritz method).	1-8	6
	2.2	Minimization of a functional, Principle of minimum total potential,		
		Formulation of 'stiffness matrix', assembly concepts to develop system		
		equation.		
	3.1	One Dimensional Problems:		
3		One dimensional second order equations - discretization-element types -		
		linear and higher order elements -derivation of shape functions and		
		stiffness matrices and force vectors		
	3.2	Assembly of Matrices- solution of problems in one dimensional structural		
		analysis, heat transfer (stepped and taper bars, spring-Cart Systems)	1-8	8
	3.3	Analysis of Plane trusses, Analysis of Beams.		
	4.1	<b>Two Dimensional Finite Element Formulations:</b>		
4		Introduction, three node triangular element, four node rectangular		
		element.		



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050 (Autonomous College affiliated to University of Mumbai)

	4.2	Natural coordinates and coordinates transformations: serendipity and	1-8	4
		Lagrange's methods for deriving shape functions for triangular element.		
	5.1	Finite Element Formulation of Dynamics and Numerical Techniques:		
		Free vibration problems of rod and beam, Lumped and consistent mass		
		matrices.		
	5.2	Solutions techniques to Dynamic problems, longitudinal vibration	1-8	4
5		frequencies and mode shapes, Fourth order beam equation, transverse		
		deflections and natural frequencies of beams.		
			Total	26

### **Tutorial:**

Sr. No.	Tutorial Details	Hours
1	Numerical on Galerkin method.	01
2	Numerical on Subdomain method.	01
3	Numerical on Rayleigh-Ritz method.	01
4	Numerical on Stepped Bar/ spring-Cart Systems	01
5	Analysis of Plane trusses	01
6	Analysis of Beams.	01
7	Numerical on Natural frequency of axial vibration of bar.	01
8	Numerical on Natural frequency of transverse vibration of bar.	01
	Total Hours	08

# <u>Course Assessment:</u> Theory:

<u>ISE-1:</u>

Activity: Quizzes/Assignment on first two modules (20 Marks)

**ISE-2:** 

Activity: Quizzes/Assignment on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

T<u>utorial:</u> ISE-1

First 3 tutorials (20 marks) Continuous pre-defined rubrics-based evaluation for 20 marks. ISE-2

Next 5 tutorials (30 marks) Continuous pre-defined rubrics-based evaluation for 30 marks

## **Recommended Books:**

1. Textbook of Finite Element Analysis by Seshu P, Prentice Hall of India

2. Finite Element Method by J N Reddy, TMH

3. 'Introduction to Finite Elements in Engineering, Chandrupatla and Belegundu, Pearson Education

4. Finite Element Methods by R Dhanraj and K Prabhakaran Nair, Oxford University Press

5. A first course in Finite Element Method by Logan D L, Thomson Asia PvtLtd

6. 'Concepts and Applications of Finite Element Analysis by Cook R D, Malkus D S, Plesha ME, John-Wiley Sons

7. The Finite Element Method in Engineering by S. S. Rao, Butter Worth Heinemann

8. Fundamental Finite Element Analysis and Application with Mathematica and MATLAB Computations by M. Asghar Bhatti, Wiley India Pvt. Ltd.

#### Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112/104/112104193/ https://nptel.ac.in/courses/105/106/105106051/ https://nptel.ac.in/courses/112/104/112104115/ https://nptel.ac.in/courses/112/103/112103295/ https://nptel.ac.in/courses/112/106/112106135/ https://nptel.ac.in/courses/112/106/112106130/ https://nptel.ac.in/courses/105/105/105105041/



Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned				ed		
		L	Т	P	L	Т	Р	Total
25PEC13ME23	Dynamics of Machinery	2	1		2	1		3
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	30	100	
		Tutorial	20		30			50

Pre-requisite Course Codes	Theor	y of Machines					
	CO1	Demonstrate working Principles of different types of					
		governors and Gyroscopic effects on the mechanical systems					
	CO2	Illustrate basic of static and dynamic forces					
	CO3	Determine natural frequency of element/system					
<b>Course Outcomes</b>	CO4	Determine vibration response of mechanical elements /					
		systems					
	CO5	Design vibration isolation system for a specific application					
	CO6	Demonstrate basic concepts of balancing of forces and					
		couples					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	<b>Governors:</b> Introduction to Centrifugal and Inertia governors, Study and Force analysis of Porter and Hartnell governors including Performance characteristics, Governor effort and power	3-4	4
	1.2	<b>Gyroscope:</b> Introduction, Gyroscopic couple and its effect on spinning bodies, naval ships during steering, pitching, rolling and their stabilization.	3-4	1
2	2.1	Static and Dynamic force analysis of Slider crank mechanism (neglecting mass of connecting rod and crank), Turning moment on crank shaft	3-4	2
	2.2	Dynamically equivalent systems to convert rigid body into two mass with and without correction couple (Case study- Connecting rod )	3-4	2
3	3.1	<b>Basic Concepts of Vibration:</b> Vibration and oscillation, causes and effects of vibrations, Importance of study of vibrations, Vibration parameters - springs, mass, damper, Motion- periodic, non-periodic, degree of freedom, static equilibrium position, vibration classification, steps involved in vibration analysis	8-9	1
	3.2	<b>Free Undamped Single Degree of Freedom Vibration</b> <b>System:</b> Longitudinal, transverse, torsional vibration system, Methods for formulation of differential equations by Newton, Energy, Lagrangian and Rayleigh's method	8-9	3

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	4.1	<b>Free Damped Single Degree of Freedom Vibration System:</b> Introduction to different methods of damping, Study and analysis of 1) Viscous damped system (under damped, critically damped, over damped; Logarithmic decrement ) 2)Coulomb's damping (Combined Viscous and Coulomb damping excluded)	8-9	3
	4.2	<b>Equivalent Single Degree of Freedom Vibration System:</b> Conversion of multi-springs, multi masses, multi-dampers into a single spring and damper with linear or rotational co-ordinate system	8-9	3
5	5.1	<b>Forced Single Degree of Freedom Vibratory System:</b> Analysis of linear and torsional systems subjected to harmonic force excitation and harmonic motion excitation (excluding elastic damper)	8-9	3
6	6.1	<b>Rotor Dynamics:</b> Critical speed of single rotor, undamped and damped	3-4	1
	6.2	<b>Balancing:</b> Static and Dynamic balancing of multi rotor system (up to four rotors), balancing of reciprocating masses in In-line engines (up to four cylinders), Introduction to V-engines (excluding other radial engines)	3-4	3
Total				26

## Course Assessment:

**Theory:** <u>ISE-1:</u> Activity: Quiz on first three modules (20 Marks) <u>ISE-2:</u> Activity: Quiz on last three modules (20 Marks) <u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus <u>ESE:</u> 90 minutes 30 Marks written examination based on remaining syllabus after MSE

# Tutorial:

# <u>ISE-1:</u>

Assignment on Governors and Gyroscope (10 marks)

Assignment on Static and Dynamic Force Analysis (10 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks.

# <u>ISE-2:</u>

Assignment on Free Undamped and Damped Vibrations (10 marks) Assignment on Forced Vibrations (10 marks) Assignment on Balancing (10 marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

## **Recommended Books:**

1. Theory of Machines Thomas Bevan CSB Publishers & Distributors

2. Theory of Machines by Jagdishlal Metropolitan Book New Delhi, Company, Daryaganj, Delhi

3. Theory of Machines by S.S.Ratan Tata McGraw Hill , New Delhi



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4. Theory of Machines by P.L.Bellaney Khanna publication, NewDelhi

5. Theory of Machines and Mechanisms by John J Uicker, Gordon R Pennock and Joseph E Shigley, Oxford University Press

- 7. Theory of Vibration with Applications, by W. Thomson, 2nd edition, Pearson Education
- 8. Mechanical Vibrations by S.S.Rao, fourth edition, Pearson Education
- 9. Mechanical Vibraitons by G.K.Grover
- 10. Fundamentals of Mechanical Vibration by S.Graham Kelly, Tata McGraw Hll
- 11. Principles of Vibration by Benson H Tongue, 2nd Edition, Oxford University Press
- 12. Vibration Analysis by P. Srineevasan, TMH
- 13. Mechanical Vibrations- Schaum's outline series, William W.Seto, McGraw Hill
- 14. Theory and Practice of Mechanical Vibrations by J S Rao and K Gupta, New Age International
- 15. Elements of Vibration Analysis by Leonard Meirovitch, McGrav-Hill, New York

#### Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112/101/112101096/ - Dynamics of Machines, IIT Bombay https://nptel.ac.in/courses/112/107/112107212/ - Introduction to Mechanical Vibration, IIT Roorkee



Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
	Condition Monitoring	L	Т	Р	L	Т	P	Total	
				2			1	1	
25DEC12ME24		Examination Scheme							
25FECI5ME24			ISE1	MSE	ISE2	ESE		Total	
		Theory							
		Lab	20		30			50	

Pre-requisite Course Codes		
	After will b	completing the given assignments and experiments, students e able to:
	CO1	Understand the fundamentals of condition monitoring
Course Outcomes	CO2	Explain condition monitoring techniques and equipment
Course Outcomes	CO3	Diagnose machinery faults using vibration analysis
	CO4	Apply ISO standards for condition monitoring
	CO5	Conduct experimental studies on machinery faults
	CO6	Interpret and document condition monitoring results

Module No.	Experiments / Assignments List					
1	<b>Introduction to Condition Monitoring</b> Overview of condition monitoring and its techniques, Introduction to condition monitoring equipment and software in Lab, Basics of data acquisition and signal processing, Vibration sensors (Accelerometers, Velometers, Displacement sensors), Time-domain and frequency-domain analysis (FFT, RMS, Peak values), Identification of common faults (imbalance, misalignment, bearing defects), Examples of Condition Monitoring in Industries, Case studies based on Maintenance Strategies (Breakdown, Preventive, Predictive and Proactive)					
2	Assignment on : Study of ISO Standards for Condition Monitoring (ISO 17359, ISO 10816, ISO 18436)					
3	<ul> <li>Experiment (any 4) on</li> <li>a. Condition Monitoring and Machinery Fault Diagnosis – Good Shaft and Bearing Signature</li> <li>b. Condition Monitoring and Machinery Fault Diagnosis – Unbalancing with varying speed</li> <li>c. Condition Monitoring and Machinery Fault Diagnosis – Misalignment</li> <li>d. Condition Monitoring and Machinery Fault Diagnosis – Bent shaft</li> <li>e. Condition Monitoring and Machinery Fault Diagnosis – Mechanical Looseness</li> <li>f. Condition Monitoring and Machinery Fault Diagnosis – Bearing Defects / Fault</li> <li>g. Condition Monitoring and Machinery Fault Diagnosis – Bearing Defects / Fault</li> </ul>					



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

h. Condition Monitoring	and Machinery Fault Diagnosis – Regular-triangle Method
for Dynamic Balance	
i. Condition Monitoring	and Machinery Fault Diagnosis – Lissajous Figure
j. Condition Monitoring	and Machinery Fault Diagnosis – Oil Whirl and Oil Whip
of Sliding Bearing	

### Laboratory Course Assessment:

ISE-1:	Assignment on Module 1 (10 Marks)
	Assignment on Module 2 (10 Marks)
<b>ISE-2:</b>	Quiz based on Module 1 and 2 (10 Marks)
	Atleast 4 experiments to be conducted from Module 3 (20 Marks)

Note: ISE will be based on Continuous predefined rubrics based evaluation

# **References :**

#### Books:

- 1. A.R. Mohanty Machine Condition Monitoring: Principles and Practices, CRC Press
- 2. R. B. Randall Vibration-Based Condition Monitoring: Industrial, Aerospace, and Automotive Applications
- 3. Allan Davies Handbook of Condition Monitoring: Techniques and Methodology
- 4. B.K.N. Rao Handbook of Condition Monitoring
- 5. Clyde M. Creese Introduction to Machinery Analysis and Monitoring
- 6. Tony L. Schmitz & K. Scott Smith Machinery Vibration Analysis
- 7. R.A.Collacott Mechanical Fault Diagnosis and Conditon Monitoring, Chapman and Hall

## **ISO Standards for Condition Monitoring:**

- 1. ISO 17359 Guidelines for Condition Monitoring and Diagnostics of Machines
- 2. ISO 10816 Evaluation of Machine Vibration by Measurements on Non-Rotating Parts
- 3. ISO 18436 Requirements for Training and Certification of Condition Monitoring Personnel
- 4. ISO 13373 Guidelines for Vibration Condition Monitoring of Machines

#### **Research Papers & Journals:**

- 1. "Condition Monitoring and Fault Diagnosis: A Review" *Elsevier, Mechanical Systems and Signal Processing*
- 2. "Vibration Analysis for Machine Fault Detection" IEEE Transactions on Industrial Electronics
- 3. "Predictive Maintenance Using Machine Learning and IoT Sensors" Journal of Intelligent Manufacturing
- 4. "Recent Advances in Rotating Machinery Condition Monitoring" International Journal of Prognostics and Health Management



Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

#### Laboratory Manuals & Guides:

- 1. SKF Vibration Analysis Handbook Industry-standard guide for vibration monitoring.
- 2. Fluke Infrared Thermography Guide Practical guide on thermal imaging for condition monitoring.
- 3. Emerson Condition Monitoring Manual Industrial approach to vibration-based condition monitoring.

#### **Online Resources & Software:**

- 1. National Instruments LabVIEW for Vibration Analysis (<u>www.ni.com</u>)
- 2. SKF Condition Monitoring & Predictive Maintenance (www.skf.com)
- 3. Emerson Machinery Health Management (<u>www.emerson.com</u>)
- 4. ReliabilityWeb Condition Monitoring Articles & Webinars (<u>www.reliabilityweb.com</u>)
- 5. CBM Connect Free Courses & Webinars on Condition Monitoring (<u>www.cbmconnect.com</u>)
- 6. NPTEL : Machinery Fault Diagnosis and Signal Processing Prof. Amiya Ranjan Mohanty, IIT Kharagpur (12 Weeks)
- 7. Condition Monitoring and Maintenance Management (BME-025) Dr. N. Venkateshwarlu, Indira Gandhi National Open University ( 8 Weeks)



Course Code	Course Name	Teaching	Feaching Scheme (Hrs/week)     Credits Assigned						
		L	Т	Р	L	Т	P	Total	
		2	0	0	2	0	0	2	
25MDM03	Health, Wellness and		Examination Scheme						
	Psychology		ISE-I	MSE	ISE	E-II ES	E	Total	
		Theory	50		5	0	-	100	
<u> </u>		Lab					-		

Pre-requisit	te Cour	rse Codes	
Course	CO1	Introduce the effectiveness	ne concept of health, wellness and psychology, and understand its sin handling stress.
Outcomes	CO2	Develop hu setting.	man strength and life-enhancement skills through recovery and goal
	CO3	Apply the h	olistic well-being quotient for personal and professional benefits.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Psychology, Health and Wellness		
	1.1	Understanding holistic health- Meaning, components of holistic health-	R1	4
		components of wellbeing, Psychology of overall health-enhancing		
		behaviors component, Types of health-compromising behaviors, Illness		
		Management and wellness enhancement.		
	1.2	Nature and source of stress, personal and professional triggers of stress,	R2	4
		Effects of stress, coping with stress (minimalistic yet effective exercise		
		habits)		
2		Promoting Personal and Professional Wellness: Human Strengths		
		& Life-		
		Enhancement		
	2.1	Strength: Definition, meaning; Realizing strength; Maximizing	R2 &	4
		Unrealized strength	R3	
		Weakness: Definition, meaning; Identifying and overcoming weakness;		
		Developing hope and optimistic approach.		
	2.2	Recovery and Goal Setting: analyzing trends in personality,	R2	4
		Approaching Individual differences; Meaning of Goal setting, Types		
		and effectiveness of Goal Setting.		
		Motivation: Meaning, Theory of Needs, 4A's of coping with stress		
		during or after goal setting.		
	2.3	Eudaimonic Wellness: Meaning and characteristics; concept of	R1,	2
		defensive	& R4	
		coping.		
3		Positive Approach and The Psychology of Living in The Present		



#### Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3.1	The Psychology of Living in the Present: meaning, self-registering to the flow of positive thoughts and actions; addressing positive and negative emotions; Eliminating daily hassles, creating happiness. Responding to overthinking: Sociocultural factors and self- realization.	R1,R2, &R4	4
3.2	Resilience: Meaning and Nature; How to build resilience; Self-	R3 &	4
	communication	R4	

	and self-care, reframe thoughts; channelize gratitude; practice resilience building: physical and mental exercises.	
	Total	26

# Course Assessment:

#### <u>ISE-1:</u>

#### **Certification: 50 marks**

NPTEL/ Swayam/any other authentic portal certification <u>https://archive.nptel.ac.in/courses/109/103/109103182/</u> <u>https://onlinecourses.nptel.ac.in/noc23_hs06/preview</u>

### <u>ISE-2:</u>

Health and Wellness: Introduce Group Happiness Project. Group work: Meet, exchange, contact, collect info, talk about why you chose this topic, brainstorm ideas, and present people's opinions in your designed PPT. **30 marks** 

Psychology of wellness or happiness: Case Study and Brief Report on : Chris Gardener in the Pursuit of Happyness (Group-specific interpretation) **20 Marks** 

#### **Recommended Books:**

- Emmons, R.A., & McCullough, M.E. (2003). Counting blessings versus burdens: An experimental investigation of gratitude and subjective well-being in daily life. Journal of Personality & Social Psychology, 88, 377-389
- 2. Carpenter, S. (2012). Awakening to sleep. Monitor on Psychology, 44 (1), 40.
- 3. Emmons, R. A., & Mishra, A. (2012). Why gratitude enhances well-being: What we know, What We Need to Know.
- 4. Carr, A. (2004). Positive Psychology: The science of happiness and human strength UK Routledge.



<b>Course Code</b>	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
		2	0	0	2	0	0	2	
25MDM04	Emotional and Spiritual Intelligence		Examination Scheme						
			ISE-I	MSE	ISE	-II ES	E	Total	
		Theory	50		50	)	.	100	
		Lab					-		

Pre-requisit	te Cour	rse Codes					
	CO1	Introduce the concept of emotional intelligence, its models, components and					
Course		sures of emotional intelligence					
Outcomes	CO2	Understand the significance of emotional intelligence in self-growth and building					
		ective					
		relationships, Understand the professional impact of emotional intelligence					
	CO3	Develop a wide range of work and life skills.					
	CO4	Display spiritual intelligence in different roles.					
	CO5	Apply the spiritual quotient for corporate benefits.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Fundamentals of Emotional Intelligence		
	1.1	Emotion- Meaning, characteristics of emotion, components of emotion-	R1	3
		cognitive component, physiological component, Behavioural		
		component. Types of emotions, exposing the myths about emotion,		
		physiological or bodily changes accompanying emotions, how emotions		
		affect our thinking		
		and actions		
	1.2	Nature and Significance of EI, Models of emotional intelligence:	R2	3
		Ability, Trait and Mixed, Building blocks of emotional intelligence:		
		self-awareness, self- management, social awareness, and relationship		
		management		
2		Personal and Social Competence		
	2.1	Self-Awareness: Observing and recognizing one's own feelings,	R2	3
		Knowing one's strengths and areas of development		
		Self-Management: Managing emotions, anxiety, fear, and anger		
	2.2	Social Awareness: Others' Perspectives, Empathy and Compassion	R2	3
		Relationship Management: Effective communication,		
		Collaboration, Teamwork, and Conflict management		
		(professional impact)		
	2.3	Strategies to develop and enhance emotional intelligence and using	R1	2
		them effectively in professional life		
3		Background and Approach: Spiritual Intelligence and Karma Yoga		



#### Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

3.1	Spiritual Intelligence- Definition, need, state of presence, psychological	R6,R8	3
	element, Intuitive intelligence.		
	Foundation of Spiritual Intelligence		
	Types of spiritual actions		
	Models- SQ and SI-Growth model		
	Yoga of Action and Spirituality: Professionalism		
3.2	Types of spiritual actions	R5, R7	3

		Models- SO and SI-Growth model		
		Readiness for spiritual intelligence: self-leadership, synthesize high		
		nerformance spiritual awareness neuronsychology and state of conscious		
		identity		
		identity.		
4		<b>Opposite Polarity in SI and Overall Impact on Personality</b>		4
	4.1	Twin poles of attention- subject and the object pole	R8	
		Benefits of Spiritual Intelligence- personal, social and corporate		
		Dimensions of Spiritual Intelligence- SI and Self Esteem SI and		
		Restoration of confidence		
		CL and alarity of the water and sneech. Demonstrative moulding and CL		
		SI and clarity of thoughts and speech, Personality moulding and SI.		
5	51	Spiritual Ecology and Environmental Crassroots Activism		
5	5.1	Spiritual Ecology and Environmental Grassroots Activism		
		Spiritual Stewardship and Ecology: Case studies based on making a	R4	2
		difference in ecology through environmental grassroots activism		
Total				26
rotar				20

Course Assessment: ISE-1: Certification: 50 marks NPTEL/ Swayam/ Farmer space Certification

https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

https://www.framerspace.com/course/-Mx9gV_of5-self-directed-emotional-learning-for-empathy-and-kindness-shortcourse?cid=64815e6241de0ce10ee9c717

#### ISE-2:

Emotional Intelligence: Identifying emotions and applying it to personal and professional situations 20 marks
 Spiritual Intelligence: Performing solutions based on given problems 30 Marks

#### **Recommended Books:**

- 1. Bar-On, R., & Parker, J.D.A.(Eds.) (2000). The handbook of emotional intelligence, San Francisco, California: Jossey Bros.
- 2. Goleman, D. (2005). Emotional Intelligence. New York: Bantam Book.
- 3. Sternberg, R. J. (Ed.). (2000). Handbook of intelligence. Cambridge University Press.
- 4. Thich Nhat Hanh, V. S. (2016). Spiritual Ecology: The Cry of the Earth. Golden Sufi Center.
- 5. Vivekananda, S. (2015). *The Complete Book of Yoga*. Solar Books.

- 6. Yogananda, P. (1946). Autobiography of a Yogi. Thomas Press Ltd.
- 7. Krishnaswami, O. (2006). Karma Yoga: Yoga of Action. Dev Publishers.
- 8. Buzan, T. (2001). Power of Spiritual Intelligence: 10 Ways to Tap into Your Spiritual Genius. Thorsons.

Course Code	Course Name	Teach (H	ing Sch rs/week	eme x)	C	Credits Assigned		
		L	Т	Р	L	Т	Р	Total
	Embedded Systems	1		2	1		1	2
25OE031		Examination Scheme						
250E051			ISE1	MSE	ISE2	ESE	Total	
		Theory	10	15	10	15	4	50
		Lab	20		30		4	50

Pre-requisite	re-requisite Digital Electronics					
<b>Course Codes</b>	Microc	Microcontrollers				
	At the End of the course students will be able to:					
	CO1	Identify and describe various characteristic features and				
		applications of Embedded systems				
	CO2	Analyse and select hardware for Embedded system				
Course Outcomes		implementation				
(CO)	CO3	Compare GPOS and RTOS and investigate the concepts of				
		RTOS				
	CO4	Evaluate and use various tools for testing and debugging				
		embedded systems.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Embedded Systems		02
	1.1	Definition, Characteristics, Classification, Applications	1,2	
	1.2	Design metrics of Embedded system and Challenges in optimization of metrics	1,2	
2		Embedded system hardware		04
	2.1	Hardware components of Embedded systems	1,2	
	2.2	Sensors an Actuators: Criteria for selection (with examples)	1,2	
	2.3	Communication Interfaces: I2C, CAN	1,2	
	2.4	Low-power Embedded system design	1,2	
3		Embedded system software		
	3.1	Real-time Operating system (RTOS): Need of RTOS in Embedded systems, Comparison with GPOS, Task, Task states, Multi-tasking, Task scheduling methods-Pre-	2,3	05
		Monotonic Scheduling, Farliest Deadline First		
	3.2	Inter-process communication: Usage of Semaphores Task synchronization: Issues, Deadlock condition and solutions Shared data problem, Priority inversion.	2,3	
4		Testing /Debugging and System Integration		02
	4.1	Hardware testing tools, White-Box and Black-Box testing.	2	
	4.2	Embedded Product Design Life-Cycle (EDLC)- Waterfall Model, Hardware-Software Co-design	2	



	1	otal 15
Sr.no	Suggested List of experiments	Ref.
1	Interfacing of LEDs /switches with any embedded core.	4
2	Interfacing of LCD/ Seven segment display with any embedded core.	4
3	Interfacing of Temperature sensor with any embedded core.	4
4	Implement the I2C communication to connect to DS1307 RTC	2
5	Implement a power saving mode with any embedded core	2
6	Porting of FreeRTOS to Arduino/STM32.	5
7	Write a Program to Create Multiple Tasks and understand the Multitasking capabilities of RTOS (FreeRTOS).	5
8	Write a Program to illustrate the use of Binary and Counting Semaphore for Task Synchronisation using FreeRTOS.	5

#### **Course Assessment:**

Theory:

**ISE-1:** Think-Pair- Share activity (any case study) -10 marks

**ISE-2:** Assignment/Oral -10 marks

MSE: 15 Marks 60 minutes written examination based on 50% syllabus

ESE: 15 Marks 60 minutes written examination based on remaining syllabus after MSE

#### Laboratory:

**ISE-1** will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

**ISE-2** will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

Mini-project on design of an embedded system for any application for 10 marks

#### **Recommended Books:**

T. 4.1 12



1.Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.

2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.

3. Sriram Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.

4. M.A.Mazidi, J.C.Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems

Using Assembly and C", Pearson Education, Second Edition, 2007. 5. www.freertos.org

# **Further Reading:**

1. David Simon, "An Embedded Software Primer", Pearson, 2009.

2. Jonathan W. Valvano, "Embedded Microcomputer Systems – Real Time Interfacing", Publisher - Cengage Learning, 2012 Edition 3rd.

3.FrankVahid, Tony Givargis, "Embedded System Design – A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.

4. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009



Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned		
		L	Т	Р	L	Т	Р	Total
	ІоТ	1		2	1		1	2
2505032		Examination Scheme						
250E052			ISE1	MSE	ISE2	ESE	Total	
		Theory	10	15	10	15	4	50
		Lab	20		30	-	4.	50

Pre-requisite Course		
Codes		
	CO1	Explain the fundamentals of IoT and Industry 4.0, including their architectures, protocols, and applications. (Cognitive Level: Understand)
	CO2	Apply networking and communication protocols like MQTT, CoAP, and LoRa to design efficient IoT systems. (Cognitive Level: Apply)
Course Outcomes	CO3	Analyze the requirements for IoT system design and development, integrating hardware platforms and software tools for real-world applications. (Cognitive Level: Analyze)
	CO4	Use appropriate tools to process and visualize real-time data. (Cognitive Level: Apply)
	CO5	Examine emerging trends such as AI in IoT, edge computing, and 5G to identify their potential impact on IoT and Industry 4.0 ecosystems. (Cognitive Level: Analyze)

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Module 1: Introduction to IoT and Industry 4.0	1	3
	1.1	Concepts of IoT: Architecture, protocols, and standards		



	1.2	Industry 4.0 Fundamentals: Smart factories, cyber-physical		
		systems (CPS), and digital twins.		
	1.3	IoT Applications: Smart cities, healthcare, agriculture, and		
		autonomous systems.		
	1.4	Technological Pillars of Industry 4.0: IoT, AI, big data, and		
		robotics integration		
2		Module 2: IoT Protocols and Networking	1	3
	2.1	Networking Basics for IoT: IP-based and non-IP-based		
		protocols.		
	2.2	IoT Communication Protocols: MQTT, CoAP, HTTP, LoRa,		
		Zigbee, BLE, and 6LoWPAN.		
	2.3	Edge and Fog Computing: Concepts and role in IoT data		
		processing		
	2.4	Security in IoT Networks: Challenges and solutions.		
		Module 3: IoT System Design and Development		
3		IoT System Design and Development	2	3
	3.1	IoT Hardware Platforms: Arduino, ESP32, and Raspberry Pi.		
	3.2	IoT Software Tools: IDEs, Node-RED, and cloud platforms	+	
		(AWS IoT, Google Cloud IoT).		
	3.3	Sensor and Actuator Integration: Types, working, and	1	
		interfacing techniques.		
	3.4	Design Methodologies: Energy efficiency, scalability, and fault		
		tolerance.		
		Module 4: IoT Data Management and Analytics	3	3
4	4.1	Data Analytics: Role of big data and machine learning in IoT.		
		Visualization Tools: Grafana, Tableau, and Power BI.		
	4.2	IoT Data Lifecycle: Acquisition, transmission, storage, and		
		visualization		
	4.3	IoT Databases: Time-series databases and NoSQL		
		Module5:Industry 4.0 Use Cases and IoT Applications,	4	3
		Future Trends and Emerging Technologies		
5	5.1	Smart Manufacturing: Automation, predictive maintenance, and		
č		robotics.		



5.4	5G and IoT: Opportunities and challenges. Edge AI: Combining IoT devices with AI at the edge. Sustainability in IoT: Energy-efficient frameworks and green	
5.4	optimization AI in IoT: Role of machine learning and deep learning.	
5.2	IoT in Logistics and Supply Chain: RFID, smart tracking, and inventory management.	

Module	Sr.no	Suggested List of experiments	Ref.	Hrs.
No.				
1	1	Experiment: Setup and Configuration of an IoT Development		2
		Board		
		Objective: Install and configure ESP32 or Raspberry Pi for IoT		
		projects.		
		Tools: Arduino IDE, Python.		
2	2	Experiment: Implement MQTT for Sensor Data		2
		Communication		
		Objective: Transmit real-time sensor data to a cloud platform		
		using MQTT.		
		Tools: MQTT.fx, HiveMQ.		
	3	Experiment: Compare IoT Protocols (CoAP vs. MQTT)		
		Objective: Analyze energy consumption and latency differences		
		between protocols.		
		Tools: Python, Wireshark.		
	4	Experiment: LoRa Communication Setup		2
		Objective: Establish communication between two LoRa nodes		
		and measure range.		
		Tools: LoRa modules, Arduino IDE.		
3	5	Experiment: Interfacing Sensors and Actuators		2
		Objective: Interface temperature, humidity, and motion sensors		
		with ESP32 to trigger an actuator.		
		Tools: Arduino IDE, Blynk App.		
	6	Experiment: Build a Smart Home Automation System		4
		Objective: Control appliances using voice commands via		
		Google Assistant.		



		Tools: ESP32, Node-RED, Google API.	
	7	Experiment: IoT-Based Energy Monitoring	4
		Objective: Monitor and analyze household energy consumption	
		in real-time.	
		Tools: ESP32, Current Sensor, ThingSpeak.	
4	8	Experiment: IoT Data Visualization Using Grafana	2
		Objective: Collect sensor data and visualize it in Grafana	
		dashboards.	
		Tools: InfluxDB, Grafana.	
	9	Experiment: Real-Time IoT Data Analytics	2
		Objective: Perform basic analytics on IoT data (e.g., finding	
		temperature trends).	
		Tools: Python, Pandas, Matplotlib.	
			6
5	10	INDUSTRIAL VISIT	
		Total	26

#### Course Assessment:

Theory: ISE-1: Activity: Quiz and assignments 10 Marks Case Study Presentation ISE-2: Two hours 10 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

**MSE:** 15 Marks 60 minutes written examination based on 50% syllabus **ESE:** 15 Marks 60 minutes written examination based on remaining syllabus after MSE

Lab: ISE:

**1. ISE-1** will be conducted for four or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Remaining Four experiments or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 30 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks/Mini project



### **Recommended Books:**

- [1] Arshdeep Bahga, Vijay Madisetti "Internet of Things: A Hands-On Approach" Publisher: Orient Blackswan Private Limited - New Delhi
- [2] Peter Waher, "Mastering Internet of Things: Design and Create Your Own IoT

Applications", Packt Publishing (March 28, 2018); eBook (Free Edition)

[3] Perry Lea," "IoT and Edge Computing for Architects: Implementing Edge and IoT

Systems from Sensors to Clouds with Azure IoT and AWS IoT Core", Publisher(s): Packt Publishing ISBN: 9781839214806

- [4] Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Publisher New York, NY : Apress
- [5] David Hanes, Gonzalo Salgueiro, Rob Barton," IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things" Released June 2017Publisher(s): Cisco Press ISBN: 978013430709

## **Online Resources:**

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119740780?msockid=0d711fd0b87062382 ca90a8bb9c26374(Print ISBN:9781119740759 |Online ISBN:9781119740780 |DOI:10.1002/9781119740780)

## **Further Reading:**

- [1] Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things"
- [2] Klaus Schwab, "The Fourth Industrial Revolution"



Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned			
	E-Vehicle	L	Т	Р	L	Т	Р	Total	
		1		2	1		1	2	
2505023		Examination Scheme							
250E055			ISE1	MSE	ISE2	ESE	Total		
		Theory	10	15	10	15	50		
		Practical	20		30		4	50	

Pre-requisite Course Codes		
	CO1	Describe significance of Electric vehicle for sustainability.
	CO2	Design and modelling of EV power train.
Course Outcomes	CO3	Describe Electric motor speed control and regenerative braking.
	CO4	Describe battery monitoring and thermal protection.
	CO5	Describe vehicle control units and communication protocols.

Module	Unit	Topics		Hrs.
No.	No.			
1		Introduction to Electric Vehicles	1,2	3
	1.1	Introduction to Electric vehicles, Advantages and significance of EVs, motors and power electronics		
	1.2	Different powertrain configuration of EVs and Hybrid vehicles.		
		Components of EV Powertrain	1,2	
2				6
	2.1	Vehicle modelling, Vehicle dynamics , drive cycle ,Basics of Power train simulation.		



	2.2	Sizing and specifications of different sub-systems, Role of Power		
		Electronics and Motors in EVs.		
3	-	EV Motor Drive and Control:	1,4,5	6
	3.1	Introduction to different types of motors used in EVs and their comparison, Selection of Electric motor.		
	3.2	Overview of speed control of BLDC and PMSM, Regenerative braking concept, energy saving		
4		Battery Packs and Battery management System	1,4,5	6
	4.1			
		Different battery technologies, Advantages of Lithium ion battery , Battery pack , Battery specifications and selection criteria.		
	4.2	Battery monitoring and Protection, Thermal management, circuits and techniques for Battery management system (BMS)		
5	-	Vehicle Control and Communication		3
	5.1	Features and functionality of Vehicle Control Unit, Architecture and Protocols of VCUs, Communications requirements		
		EV Safety & Standards:		2
6	6.1	Safety aspects and protection arrangements, International and national standards		
	<u></u>	Total		26

Module	Sr.	Suggested List of experiments	Ref.	Hrs.
No.	no			
	1	Study of different powertrain configuration.	1,2	2
	2	Vehicle modelling and Simulation .	1,2	3
	3	Drive cycle simulation and plot under various driving conditions.	1,2	2



	4	Design of simple battery charger circuit.	1,2	2
	5	Design of Thermal protection circuit for EV.	1,2	2
	6	Study of Electric motor speed control.	1,2	2
	7	Mini project, case study :-Design and simulation study of any EV model available in the market.	1,2	5
Total				

# Course Assessment:

# Theory:

ISE-1: Activity: Quiz and assignments 20 Marks
Practical assignment
ISE-2: Two hours 30 Marks
Activity: Crossword, MCQs, Quiz and Assignments
Outcome:
MSE: 60 minutes 15 Marks written examination based on 50% syllabus
ESE:60 minutes 15 Marks written examination based on the remaining syllabus after
MSE

## Lab:

ISE:

**1. ISE-1** will be conducted for four or 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

- 2. ISE-2
  - a. Remaining Four experiments or 50% of experiments. Continuous pre-defined rubricsbased evaluation for 20 marks.
  - b. Simulation using modern tools to solve the given problem statement for 10 marks/Mini project

## **Recommended Books:**

- 1. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2015
- 2. Mehrdad Ehsani, Yimin Gao and Ali Emadi, "Modern electric, hybrid electric and fuel cell vehicles : fundamentals, theory and design", CRC Press ; 2010 (available in IITB library)



- 3. James Larminie, John Lowry "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003 (available in IITB library)
- 4. Rodrigo Garcia-Valle, Joao A. Pecas Lopes, "Electric Vehicle Integration into Modern Power Networks", Springer, 2013
- 5. Ali Emadi, "Handbook of Automotive Power Electronics and Motor Drives", Taylor & Francis, 200



Course Code	Course Name	Teaching Scheme (Hrs/week)			C	redits A	Assign	red
		L	Т	Р	L	Т	Р	Total
	Fluid Mechanics and Hydraulic Machines	2	1		2	1		3
25DCC12ME1(		Examination Scheme						
25PCC15WIE10			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	100	
		Tutorial	20		30		50	

Pre-requisite Course	Thermodynamics			
Codes				
	CO1	Explain fluid properties, viscosity, and hydrostatics,		
		including forces on submerged surfaces.		
	CO2	Analyse fluid kinematics, flow classification, and flow		
		characteristics using stream and potential functions.		
	CO3	Apply Bernoulli's equation and control volume		
<b>Course Outcomes</b>		analysis for fluid flow problems.		
	CO4	Explain boundary layer concepts and aerofoil theory.		
	CO5	Describe turbomachinery principles and analyse		
		hydraulic turbines.		
	CO6	Evaluate centrifugal and positive displacement pumps,		
		including efficiency and cavitation.		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Basic Concepts: Significance of fluid mechanics, physical	1-4	2
		properties of fluid, Newton's law of viscosity, Newtonian		
		and non-Newtonian Fluid		
	1.2	Fluid Statics: Pascal's law, hydrostatic law, hydrostatic	1-4	3
		force on submerged surfaces (vertical, inclined & curved).		
		Archimedes principle, buoyancy.		
2	2.1	Fluid Kinematics: Classification of fluid flow, streamline,	1-4	4
		path line, streak line, acceleration of fluid particle,		
		differential equation of continuity, rotational flow and		
		vortices, stream function, potential function		
3	3.1	Fluid Dynamics: Concept of control volume and control	1-4	2
		surface, Importance of Reynolds Transport theorem (RTT)		



		F		
		(No numerical). Euler's equation, Expression of Bernoulli's		
		equation.		
	3.2	Laminar Viscous flow: Reynolds number, Laminar flow	1-4	2
		between parallel plates (Plane Poiseuille&Couette flow),		
		Laminar flow in circular pipe (Hagen-Poiseuille flow).		
4	4.1	Boundary Layer Theory: Concept of formation of	1-4	2
		boundary layer, boundary layer parameters, boundary layer		
		along a long thin plate and in pipe		
	4.2	Aerofoil Theory	1-4	3
5	5.1	Basic Euler's theory of turbo machines and it application to	5-6	2
		pumps, turbines and compressors		
	5.2	Hydraulic Turbines: Basic theory, classification of	5-6	2
		turbines, theory of impulse and reaction turbines, estimation		
		of work done, efficiency, characteristics of turbines		
6	6.1	Centrifugal pumps: Construction, estimation of work done,	5-6	2
		efficiency, characteristics, determination of operating point,		
		cavitation and NPSH, specific speed of pumps		
	6.2	Positive Displacement pumps: Types and applications,	5-6	2
		Head, discharge, work done and efficiency, indicator		
		diagram (no numerical on reciprocating pump).		
	•		Total	26

#### **Course Assessment:**

#### PART A (Theory)

<u>ISE-1:</u> Activity: Quiz/Assignment/Mini-Project (20 Marks) <u>ISE-2:</u> Activity: Quiz/Assignment/Mini-Project (20 Marks) <u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus <u>ESE:</u> 90 minutes 30 Marks written examination based on remaining syllabus after MSE

#### Part B (Tutorial)

**ISE-1:** Examples/Assignments on first 3 modules Continuous pre-defined rubrics-based evaluation for 20 marks.



# <u>ISE-2:</u>

Examples/Assignments on remaining modules Continuous pre-defined rubrics-based evaluation for 30 marks.

#### **Recommended Books:**

[1] Fluid Mechanics and Hydraulic Machines – R. K. Bansal, Laxmi Publications

[2] Fluid Mechanics: Fundamentals and Applications – Yunus A. Çengel, John M. Cimbala, McGraw Hill

[3] Hydraulics and Fluid Mechanics - P. N. Modi & S. M. Seth, Standard Book House

[4] Introduction to Fluid Mechanics - Fox, McDonald, Pritchard, Wiley Publications

[5] Hydraulic Machines – Jagdish Lal, Metropolitan Book Co. Pvt. Ltd.

[6] Turbomachinery: Basic Theory and Applications – S. L. Dixon, Elsevier

### AICTE Prescribed Textbook:

Fluid Mechanics & Hydraulics Machinery Author Name-Prof. Suman Chakraborty (https://ekumbh.aicte-india.org/allbook.php#)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			ied
		L	Т	Р	L	Т	Р	Total
	Machine Design	2	1		2	1		3
25DCC12ME17		Examination Scheme						
25PCCI5WIE17			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	1	00
		Tutorial	20		30			50



Pre-requisite	Engin	eering Mechanics, Mechanics of Solids				
<b>Course Codes</b>						
	CO1	Use design data book/standard codes to standardize the designed dimensions				
	CO2	Design operational joints, welded and bolted joints subjected to static loads.				
Course Outcomes	CO3	Design shaft, keys and couplings under various conditions.				
Course Outcomes	CO4	Design helical and leaf springs and pressure vessels.				
	CO5	Select bearings for a given applications from the manufacturers catalogue.				
	CO6	Select and/or design belts and flywheel for given applications				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Mechanical Engineering Design, Steps involved in design,	1-6	1
		types of design, Material properties and their uses in design,		
		Manufacturing consideration in design, Modes of failures		
	1.2	Factor of safety, Design stresses, Theories of failures	1-6	1
		(Selection in the process of designing)		
	1.3	Design of Operational Joints: Socket and Spigot Cotter	1-6	4
		joint, Knuckle joint		
2	2.1	Design of welded joints: Types & classification of welded	1-6	2
		joints, applications. Familiarization of AWS code. Strength		
		of welded joints- Transverse & parallel fillet welds. Welded		
		joints subjected to torsion. Circular fillet welds and adjacent		
		fillet welds. Design of welded joints subjected to eccentric		
		loading.		
	2.2	Design of bolted joints: stresses in bolts, joints for leak	1-6	2
		proof fluid tight applications (like cylinder to cylinder cover		
		fastening in an IC engine), bolts of uniform strength, Design		
		of bolted joints subjected to eccentric loading		
3	3.1	Design of Shaft: power transmitting, power distribution	1-6	2
		shafts, Module (excluding crank shaft) under static and		
		fatigue criteria.		
	3.2	Keys: Types of Keys and their selection based on shafting	1-6	1
		condition.		
	3.3	Couplings: Classification of coupling, Design of Flange	1-6	3



		couplings, Bush pin type flexible couplings		
4	4.1	Design of Springs: Classification and applications, design of	1-6	2
		helical compression and tension springs (only circular cross-		
		section)		
	4.2	Design of Pressure Vessels: Design concepts of thick	1-6	2
		Stresses in thick cylinders. Determination of wall thickness,		
		hoop and radial stresses, nature of hoop and radial stress		
		distribution on cylinder walls.		
5	5.1	Rolling Contact Bearings: Types of bearing and designation,	1-6	2
		selection of rolling contact bearings based on constant /		
		variable load & speed conditions (includes deep groove ball		
		bearing, cylindrical roller, spherical roller, taper roller, self-		
		aligning bearing and thrust bearing)		
6	6.1	Design and selection of Flat Belts with pulley construction.	1-6	2
	6.2	Design of Flywheel – Introduction, Fluctuation of energy	1-6	2
		and speed, turning moment diagram, estimating inertia of		
		flywheel for reciprocating prime movers and machines,		
		Weight of the flywheel		
Total				26

# Tutorial:

Sr. No.	Tutorial Details	Hours
1	Design of Cotter Joint	01
2	Design of Knuckle Joint	01
3	Design of Bolted and Welded Joints	01
4	Design of Couplings	01
5	Design of Shafts	01
6	Design of Springs and Pressure Vessels	01
7	Design of Bearings	01
8	Design of Belts and Flywheels	01
	Total Hours	08

### **Course Assessment:**

Theory: <u>ISE-1:</u> Quizzes on first Three Modules (20 Marks) <u>ISE-2:</u> Quizzes on next Three modules (20 marks)



<u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus <u>ESE:</u> 90 minutes 30 Marks written examination based on remaining syllabus after MSE

### Tutorial:

**ISE-1:** Design exercises on first four tutorials: (20 Marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

**ISE-2:** Design exercises on next four tutorials (20 Marks) Software Analysis of a machine element (10 Marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

#### **Recommended Books:**

#### **Text Books:**

- 1. Design of Machine Elements V.B. Banadari, Tata McGraw Hill Publication
- 2. Design of Machine Elements Sharma, Purohil. Prentice Hall India Publication
- 3. Machine Design by Pandya & Shah, Charotar Publishing
- 4. Mechanical Engineering Design by J.E.Shigley, McGraw Hill
- 5. Machine Design by R.C.Patel, Pandya, Sikh, Vol-I & II C. Jamnadas& Co
- 6. Recommended Data Book PSG

#### **Reference Books:**

- 1. Machine Design by Reshetov, Mir Publication
- 2. Machine Design by Black Adams, McGraw Hill
- 3. Machine Design An Integrated Approach Robert L. Norton, Pearson Education
- 4. Fundamentals of Machine Elements by Hawrock, Jacobson McGraw Hill
- 5. Design of Machine Elements by V.M.Faires
- 6. Design of Machine Elements by Spotts.

#### Links for online NPTEL/SWAYAM courses:

https://archive.nptel.ac.in/courses/112/105/112105125/

#### AICTE Prescribed Textbook:

Design of Machine Elements, Dr. A Kumaravel, M. Kathirselvam (https://ekumbh.aicte-india.org/allbook.php#)



Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned			ned			
	Fluid Mechanics and Hydraulic Machines Laboratory	L	Т	Р	L	Т	Р	Total
				2			1	1
25DCC12ME19		Examination Scheme						
25FCC15WIE10			ISE1	MSE	ISE2	ESE	Т	otal
		Theory						
		Practical	20		30			50

Pre-requisite Course	Thermodynamics			
Codes				
	CO1	Analyse the stability of floating bodies and determine		
		their equilibrium conditions		
	CO2	Calibrate flow measuring devices such as		
		Venturimeter, Orifice meter, Nozzle, and Pitot tube.		
	CO3	Verify Bernoulli's equation experimentally and		
Course Outcomes		understand its practical applications.		
Course Outcomes	CO4	Evaluate the impact of a jet on different surfaces and		
		analyze force exerted by moving fluid.		
	CO5	Perform trials on Pelton wheel/Francis turbine to		
		assess their performance characteristics.		
	CO6	Perform trials on Centrifugal Pump to assess its		
		performance characteristics.		

Sr. No	Experiments to be completed in laboratory	Hrs				
PART A: Fluid Mechanics						
1	Experiment to study stability of floating bodies	2				
2	Calibration of Venturimeter/ Orifice meter/Nozzle/ Pitot tube	2				
3	Verification of Bernoulli's Equation	2				
4	Online Virtual/Simulation based Experiment on Fluid Mechanics	2				
	PART B: Hydraulic Machines					


1	Impact of jet	2
2	Trial on Pelton Wheel- Impulse Turbine	2
3	Trial on Francis Turbine – Reaction Turbine	2
4	Trial on Centrifugal Pump	2
5	Online Virtual/Simulation based Experiment on Fluid Machinery	2
	TOTAL	18

#### **Course Assessment:**

Laboratory: <u>ISE-1:</u> Experiments from Part- A Continuous pre-defined rubrics-based evaluation for 20 marks. <u>ISE-2:</u> Experiments from Part- B Continuous pre-defined rubrics-based evaluation for 30 marks.

#### **Recommended Books:**

 Fluid Mechanics and Hydraulic Machines – R. K. Bansal, Laxmi Publications
 Fluid Mechanics: Fundamentals and Applications – Yunus A. Çengel, John M. Cimbala, McGraw Hill

[3] Hydraulics and Fluid Mechanics – P. N. Modi & S. M. Seth, Standard Book House

[4] Introduction to Fluid Mechanics – Fox, McDonald, Pritchard, Wiley Publications

[5] Hydraulic Machines – Jagdish Lal, Metropolitan Book Co. Pvt. Ltd.

[6] Turbomachinery: Basic Theory and Applications – S. L. Dixon, Elsevier

#### **AICTE Prescribed Textbook:**



Fluid Mechanics & Hydraulics Machinery Author Name-Prof. Suman Chakraborty (<u>https://ekumbh.aicte-india.org/allbook.php#</u>)



<b>Course Code</b>	Course Name	Teach (H	C	redits	Assign	ed		
	Hydraulics and	L	Т	P	L	Т	Р	Total
				2			1	1
25PCC13ME19		<b>Examination Scheme</b>						
	F neumatics Lab		ISE1	MSE	ISE2	ESE	Total	
		Lab	20		30		4	50

Pre-requisite Course Codes	None	
Course Outcomes	CO1	Design and Develop Pneumatic Circuits
	CO2	Design and Develop Hydraulic Circuits
	CO3	Design and Develop Electro-pneumatic Circuits
	CO4	Design and Develop PLC Circuits

Sr. No.	Experiments Details	Hours
1	Basic Single Cylinder Pneumatic circuits	4
2	Basic Single Cylinder Hydraulic Circuits	4
3	Flow Control and Combination Valves Pneumatic Circuits	6
4	Multiple Cylinder circuit Simulation	4
5	Basic Electro-pneumatic Circuits	4
6	Basic PLC Circuits	4
	Total	26

## **Course Assessment:**

## Laboratory work:

## 1. ISE-1 (20 marks)

Submission of the Circuit Diagrams made during the lab performance for the first 3 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics.

## 2. ISE-2 (30 marks)

- i. Submission of the Circuit Diagrams made during the lab performance for the last 3 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics (20 marks).
- ii. Lab interaction: (10 marks)



# **Reference Books:**

- 1. Festo Didactic "Fundamentals of Pneumatics", Festo, Official Training ManualFesto Manual for Electro- Pneumatics
- 2. Festo Didactic "Electro-Pneumatics Basic Level", Festo, Official Training Manual
- 3. Bolton, W. "Pneumatic and Hydraulic Systems", Butterworth-Heinemann
- 4. John W. Webb & Ronald A. Reis "Programmable Logic Controllers: Principles and Applications"

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	25PEC13ME16 Tool Engineering	L	Т	Р	L	Т	Р	Total	
		2	1		2	1	-	3	
25DEC12ME16		Examination Scheme							
25PECI5WIE10			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	30	100		
		Tutorial	20		30		50		

Pre-requisite Course Codes	PCC1	11ME03, PCC12ME05, PCC12ME07
	After	completion of this course, students will be able to:
	CO1	Understand the basics and importance of tool engineering in manufacturing industries.
	CO2	Identify different types of tools and heat treatment for tool materials
Course Outcomes	CO3	Analyze the geometry, materials, and coatings of single-point and multi-point cutting tools.
	CO4	Design <b>jigs and fixtures</b> for holding, locating, and guiding workpieces in machining
	CO5	Classify different types of <b>press tools</b> such as shearing, bending, and forming dies and develop strip layouts



COG	Understand recent trends in tool engineering for <b>eco-friendly</b> and sustainable solutions
-----	---------------------------------------------------------------------------------------------------

Module	Topics	Ref	Hrs.
110.	Introduction to Tool Engineering		
	Definition, scope, and importance		
1	<ul> <li>Types of tools and classifications</li> </ul>		04
	• Basic tool materials and their properties		-
	Tool Force Measurements using Tool Dynamometers		
	Cutting Tool Design		
	• Single-point cutting tools: tool geometry, tool angles, materials		
	• Multi-point cutting tools: drills, milling cutters, broaches		
2	• Tool life, wear, failure analysis and tool reconditioning		05
	• Tool life estimation (Taylor's tool life equation)		
	• Cost analysis in cutting tool design		
	Case studies on tool performance improvement		
	Jigs and Fixtures		
	• Definition, purpose, and importance		
3	Principles of location and clamping		04
	• Types of jigs (plate, channel, box, indexing jigs)		
	• Types of fixtures (milling, grinding, turning, welding)		
	Press Tools and Die Design		
	• Types of press tools (shearing, bending, drawing, forming)		
4	• Die components and materials		05
	<ul> <li>Progressive, compound, and combination dies</li> </ul>		
	Strip layout and die design calculations		
	Heat Treatment and Coating Technology of Cutting Tools		
5	• Heat treatment processes: hardening, tempering, annealing		04
	Coating techniques (PVD, CVD, nitriding etc.)		
	Recent Trends in Tool Engineering		
6	CAD/CAM in tool design		04
	Additive manufacturing for tool making		
	Sustainable tool engineering practices		
	Total		26

**Course Assessment:** 



## Theory:

- ISE-1: Poster Presentation & PPT on any of the Module 1-6 (group of max.4 students) (20 marks) ISE-2: Ouiz – MCO (20 Marks)
- MSE: 90 Minutes of written examination based on 50% syllabus (30 Marks)
- **ESE:** 90 Minutes of written examination based on the rest of the syllabus covered after MSE (30 marks)

## Tutorial

**ISE-1**: Assignment on Module 1, 2, and 3

**ISE-2**: Assignment on Module 4, 5, and 6

## **References:**

- 1. "Fundamentals of Tool Design" ASTME (American Society of Tool and Manufacturing Engineers)
- 2. "Tool Engineering" G.R. Nagpal
- 3. "A Textbook of Production Engineering" P.C. Sharma
- 4. "Manufacturing Science" Amitabha Ghosh & A.K. Mallik
- 5. "Metal Cutting Principles" M.C. Shaw
- 6. "Cutting Tool Design" Arthur L. McClure
- 7. "Jigs and Fixture Design" Edward G. Hoffman
- 8. "Fundamentals of Tool Engineering Design" Donald F. Eary & Edward A. Reed
- 9. "Die Design Fundamentals" Vukota Boljanovic
- 10. "Injection Mould Design" R.G.W. Pye
- 11. "Tool Engineering Handbook" S. Kuppuswamy
- 12. CIRP Journal of Manufacturing Science and Technology
- 13. International Journal of Advanced Manufacturing Technology (IJAMT)
- 14. Materials and Manufacturing Processes (Taylor & Francis)
- 15. ASME Journal of Manufacturing Science and Engineering
- 16. NPTEL (IIT Lectures) Free lectures on tool design and manufacturing.
- 17. MIT OpenCourseWare Covers mechanical and tool engineering concepts.
- 18. Tool and Die Design Courses on Udemy & Coursera
- 19. IIT Bombay NPTEL Youtube Videos
- 20. Cutting Tool Engineering Youtube Videos
- 21. The Engineering Mindset Youtube Videos



Course Code	Course Name	Теа	aching Sche (Hrs/week)	Credits Assigned					
		L	Т	Р	L	Т	P	Total	
	Advanced Materials	2	1		2	1	-	3	
25DEC12ME17		Examination Scheme							
25PECI5WE17			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	30	100		
		Tutorial	20		30			50	

Pre-requisite Course Codes	None	
	CO1	Understand the concept of artificial skins and muscles along with other advanced materials.
Course Outcomes	CO2	Understand the function of Piezoelectric materials, Magneto strictive materials, Shape memory alloys, Electroactive polymers
Course Outcomes	CO3	Comprehend important concepts of Ferrofluids and Magneto rheological Fluids
	CO4	Identify and understand different energy storage materials
	CO5	Understand classification, terminology, and manufacturing methods of composite materials

Module No.	Topics	Ref	Hrs.
1	Introduction to Advanced Materials. Artificial skins, artificial muscles, biomimetic materials, materials with tuneable responses, non-linear properties, self-healing materials, adaptive structures, self-replicating materials/structures, self-assembly, inch worm devices, hysteresis, integrated sensing and actuation	1	06
2	Overview of the following materials: Piezoelectric Materials, Magneto strictive Materials, Shape Memory Alloys, Electroactive Polymers	2	05
3	Overview of the following materials with focus on synthesis, strengths and weaknesses, and applications. Ferrofluids and Magneto rheological Fluids and applications. Soft Matter and its applications. Carbon Nanotubes and Carbon nanostructures and its applications. Thermoelectric Materials and Peltier devices.	3	05



4	Materials used for energy storage, Hydrogen Storage Materials, Energy harvesting, Energy scavenging from vibrations.	4	05
5	Composites: Classifications based on fibres and matrix, Advantages, Applications, Terminology, types, and manufacturing methods.	5	05
	Total		26

#### **Course Assessment:**

#### Theory:

cory.	
<b>ISE-1:</b>	Quiz (20 Marks)
<u>ISE-2:</u>	Quiz (20 Marks)
MSE:	90 minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 minutes of written examination based on the rest of the syllabus covered after
	MSE (30 marks)

## Tutorial

#### <u>ISE-1</u>

One assignment each on module 1, 2, and 3. Continuous pre-defined rubrics-based evaluation for 20 marks.

## <u>ISE-2</u>

One assignment each on module 4, and 5 or presentations by students in groups of 3 on recent topics related to metrology and quality engineering (20 marks). Interaction/viva other than presentation (10 marks)

#### **Reference Books:**

- 1. M.V. Gandhi and B.S. Thompson, "Smart Materials and Structures", Chapman & Hall, London; New York.
- 2. Mel Scwartz, "Encyclopaedia of Smart Materials Vol. I and II", John Wiley & Sons



- 3. Senol Utku, "Theory of Adaptive Structures: Incorporating Intelligence into Engineered Products", CRC Press.
- 4. A.V. Srinivasan, "Smart Structures: Analysis and Design", Cambridge University Press, Cambridge; New York.
- 5. M. Balasubramanian, "Composites materials processing", 1st edition, CRC press.



Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	2	1		2	1		3	
25DCC12ME19	Optimization		Ex	aminat	ion Sch	ieme		
25PCC15WIE18	Techniques		ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	]	100
		Tutorial	20		30			50

Pre-requisite	Statistical Techniques and Partial Differential Equations						
<b>Course Codes</b>							
	CO1	Identify the types of optimization problems and apply optimality criteria.					
	CO2	Formulate the problem as Linear Programming problem and analyse the sensitivity of a decision variable.					
Course Outcomes	CO3	Apply integer programming and discrete event simulation techniques for problem solving in various domains.					
	CO4	Apply multi-objective decision-making methods for problem in manufacturing environment and other domain.					
	CO5	Apply multi criterion decision making methods for problem					
		in manufacturing environment and other domain.					
	CO6	Apply Design of Experiments method for Optimization.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Basic Concepts: Statement of the Optimization Problem,	1-4	1
		Basic Definitions, Optimality Criteria for Unconstrained		
		Optimization, Optimality Criteria for Constrained		
		Optimization		
	1.2	Linear Programming Problem: Formulation, Simplex	1-4	6
		method, Big M Method, Two Phase, Primal to Dual, Dual		
		Simplex method, Sensitivity Analysis.		
2	2.1	Integer Programming Model: Gomory's cutting plane	1-4	4
		method, Branch & Bound Technique		
	2.2	Discrete Event Simulation: Generation of Random Variable,	1-4	2
		Simulation Processes, Monte-Carlo Technique		



3	3.1	Multi Objective Decision making (MODM) Methods:	1-4	4							
-		Introduction to Multi objective optimization. Traditional									
		Techniques such as, quadratic programming, geometric									
		programming. Numerical on goal programming and									
		dynamic programming.									
	3.2	ntroduction to Non-traditional optimization Techniques 3-6									
		such as Genetic Algorithm particle swarm simulated	2 0	-							
		annealing and Techniques based on Neural network &									
		Fuzziness (Only concents)									
1	11	Multi Criterion Decision making (MCDM) Methods:	1 /	3							
-	7.1	Introduction to multi criterion optimization Simple Additive	1-4	5							
		ntroduction to multi criterion optimization Simple Additive									
		Weighting (SAW) Method Weighted Product Method									
		(WPM) Analytic Network Process (ANP) Analytic									
	Hierarchy Process (AHP) Method										
5	5.1	Robust Design Methods: DOE and Taguchi techniques Full	5	4							
		Factorial Design: The basics of "full factorials", ANOVA,									
		Factorial effects and plots, and Model evaluation Fractional									
		Factorial Design: The one-half fraction and one-quarter of									
		the 2k design, The general 2k-p fractional factorial design									
		Total		26							

# Tutorial:

Sr. No.	Tutorial Details	Hours
1	Linear Programming and sensitivity analysis	02
2	Integer Programming	02
3	Monte Carlo Simulation	01
4	MODM methods for problem solving	01
5	MCDM methods for problem solving	01
6	DOE and ANOVA	01
	Total Hours	08

## **Course Assessment:**

**Theory:** <u>ISE-1:</u> Quizzes on first Two Modules (20 Marks) <u>ISE-2:</u> Quizzes on next Three modules (20 marks) <u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus



ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

## Tutorial:

**ISE-1:** Assignment on first two tutorials (20 Marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

**ISE-2:** Assignments on next four tutorials (20 Marks) Group assignment on application of software for any optimization technique (10 Marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

# **Recommended Books:**

## **Text Books:**

- 1. S.S. Rao, "Engineering Optimization Theory and Practice", John Wiley and Sons Inc.
- 2. Malik, A. K., Yadav, S. K., & Yadav, S. R. "Optimization Techniques" IK International Publishing House vt. Limited.
- 3. Taha, H. A., "Operations research: an introduction" Pearson Education India.
- 4. Gupta, P. K., & Hira, D. S. "Operations research" S Chand & Company.
- 5. Douglas C. Montgomery, "Design and analysis of experiments" (John Wiley & Sons Inc.)

## **Reference Books:**

- 1. Pablo Pedregal, "Introduction to Optimization", Springer
- 2. Ranjan Ganguli, "Engineering Optimization A Modern Approach" Universities Press
- 3. R V Rao, "Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making" (Springer Publication).
- 4. L.C. Jhamb, "Quantitative Techniques Vol. 1 and 2", Everest Pub. House
- 5. Pierre D.A., "Optimization, Theory with Application", John Wiley & sons.
- 6. Ritter, H., Martinetz, T., &Schulten, K., Addison, "Neural Computation and Self-Organizing Maps"-Wesley Publishing Company
- 7. Saravanan R,"Manufacturing Optimization through Intelligent Techniques", Taylor & Francis (CRC Press)-2006.

## Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112/101/112101298/ - Optimization from Fundamentals, IIT Bombay



Course Code	Course Name	Teaching Scheme (Hrs/week)			credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2	1		2	1		3
25DEC12ME10	Project			Exa	minatio	on Scheme		
231 EC15WIE19	Management		ISE1	MSE	ISE2	ESE	,	Total
		Theory	20	30	20	30		100
		Tutorial	20		30			50

Pre-requisite Course Codes	None	
	CO1	Apply selection criteria and select an appropriate project from different options.
	CO2	Write work break down structure for a project and develop a schedule based on it.
Course Outcomes	CO3	Identify opportunities and threats to the project and decide an approach to deal with them strategically
	CO4	Use Earned value technique and determine & predict status of the project.
	CO5	Capture lessons learned during project phases and document them for future reference

Module No.	Topics	Ref	Hrs.
1	<b>Project Management Foundation:</b> Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures	1-5	04
2	<b>Initiating Projects:</b> How to get a project started, selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	1-5	04
3	<b>Project Planning and Scheduling:</b> Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling	1-5	05



	techniques. PERT, CPM, GANTT chart, Introduction to Project Management Information System (PMIS).		
4	<b>Planning Projects:</b> Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan <b>Risk Management in projects:</b> Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment,		04
5	Executing Projects: Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit Project Contracting Project procurement management, contracting and outsourcing,	1-5	05
6	Project Leadership and Ethics: Introduction to project leadership, ethics in projects, Multicultural and virtual projects Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.	1-5	04
	Total		26

## **Course Assessment:**

Theory:

<u>ISE-1:</u>	Quiz (20 Marks)
<b>ISE-2:</b>	Quiz (20 Marks)
MSE:	90 Minutes of written examination based on 50% syllabus (30 Marks)
ESE:	90 Minutes of written examination based on the rest of the syllabus covered after
	MSE (30 marks)



## **Tutorial:**

# <u>ISE-1</u>

One assignment each on module 1, 2 and 3. Continuous pre-defined rubrics-based evaluation for 20 marks.

# ISE-2

One assignment each on module 4, 5 and 6 followed by Presentation by groups based on recent updates on SC.

#### **Recommended Books:**

1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project

Management Institute PA, USA

3. Project Management, Gido Clements, Cengage Learning

4. Project Management, Gopalan, Wiley India

5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England



Course Code	Course Name	Teach (H	ning Sche rs/week)	eme		Credits Assigned	ed		
		L	Т	Р	L	Т	P	Total	
	Industrial	2	1		2	1	-	3	
25DEC12ME110	Engineering	Examination Scheme							
25FECI5WEIIU	and		ISE1	MSE	ISE2	ESE		Total	
	Operations	Theory	20	30	20	30		100	
	Research	Tutorial	20		30			50	

Pre-requisite Course Codes	None				
	CO1	Analyze implications of Industrial Engineering in industries			
	CO2	Demonstrate the Work space design and Performance merit			
	02	rating			
Course Outcomes	CO3	Understand the material flow and importance of layout			
		optimization			
	CO4	Understand importance of Inventory and leveraging the benefit			
		to company.			
	COS	Understanding material requirement through dependent and			
	005	independent demand and meeting the deadline			
	CO6	Understanding value creation and secondary value addition.			

Module No.	Topics	Ref	Hrs.
1	Evolution & Industrial Engineering in the modern world, <b>Production and Productivity:</b> factors influencing productivity, Productivity Improvement tools & Quality Improvement tools and techniques (5s, Poka- Yoke, Kaizen, Kanban & QFD, FMEA, SMED)	1-4	04
2	Work System Design: Factors affecting human performance, physical workload and energy expenditure. Workspace design for standing and seated workers, Arrangements of components within a physical space. Job Evaluation and Wage Plan: job evaluation procedure, merit rating (performance appraisal), method of merit rating, wage and wage incentive plans	1-4	04



3	<ul> <li>Facility Location: The need for location decision, Procedure for making location decisions, Factors affecting location decisions, Methods of evaluating location decisions.</li> <li>Facility Layout / Plant Layout: Types of Layout, Significance and Factors influencing layout choices, Principles of Plant layout, Concepts of Group Technology and Cellular Manufacturing, Computerized Layout Techniques.</li> </ul>	1-4	04
4	<b>Inventory Management:</b> Classification and Functions of Inventory, The EOQ Model, P & Q System, ABC & VED analysis.	1-4	05
5	Material requirement Planning (MRP) and Material Resource Planning (MRP II), Dependent Demand and Independent Demand with an example.	1-4	05
6	Value Engineering and Value Analysis: Distinction between value engineering & value analysis and their Significance. Steps in value engineering & analysis, function analysis system techniques- FAST diagram with Case studies	1-4	04
	Total		26

## **Course Assessment:**

Theory:

- **ISE-1:** Assignment on Module 1, 2, and 3 OR Quiz (20 Marks)
- **ISE-2:** Assignment on Module 4, 5, and 6 OR Quiz (20 Marks)
- **MSE:** 90 Minutes of written examination based on 50% syllabus (30 Marks)
- **ESE:** 90 Minutes of written examination based on the rest of the syllabus covered after MSE (30 marks)

#### Tutorial

<u>ISE-1 (</u>20 marks)

Using FMEA with an example your own Solve the problem using FMEA

Using work space and Job evaluation analysis perform merit rating and short list the candidate in group of 4-5 students

Explain the importance of Plant Layout Using Vowel Methodology Muther's Grid

<u>ISE-2 (</u>30 marks)

<u>Writeup</u>

Primary and Secondary value of a product and FAST diagram for a product.

MRP and MPS : Role of Computer in Industry

Inventory Vs Liquid Cash - Review and Industry Practice



#### **Reference Books:**

- 1. Production and Operations analysis by Steven Nahmia , McGraw-Hill / Irwin publication
- 2. Facilities Planning 4th Edition by James A. Tompkins, John Wiley and Sons Inc.
- 3. Elements Of Production Planning And Control by Eilon, Samuel, New York: Macmillan
- 4. Production Planning and Control by Prof. Jhamb L.C. by Everest Publishing House
- 5. Production (Operations) Management by Prof. Jhamb L.C. by Everest Publishing House
- 6. Inventory Management Prof. Jhamb L.C. by Everest Publishing House
- 7. Operations Management- an Integrated Approach 5th Edition by R. Dan Reid, Wiley
- 8. Production and Operations Management by R. Panneer selvam, Prentice-Hall Of India
- 9. Operations Management for Competitive Advantage by Richard B. Chase, MGH
- 10. Orlicky's Material Requirements Planning, by Carol Ptak, McGraw Hill.
- 11. Enterprise resource planning: concepts and practice by Vinod kumar Garg PHI Learning
- 12. Lean Thinking: Banish Waste and Create Wealth in Your Corporation, by James P. Womack, Free Press
- 13. Toyota Production System: An Integrated Approach to Just-In-Time, by Yasuhiro Monden ,CRC PRESS



Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assign	ed	
25PEC13ME111 Manufacturing Systems	L	Т	Р	L	Т	P	Total	
	Manufacturing Systems			2			1	1
		Examina	ntion Sch	ieme				
			ISE1	MSE	ISE2	ESE	Tot	tal
		Theory						
		Lab	20		30		50	

Pre-requisite Course Codes	None			
		Learners will be able to		
	COL	Explain role of computers and information technology in		
		manufacturing systems.		
	CO2 CO3	Develop an FMS (Flexible Manufacturing System) layout		
<b>Course Outcomes</b>		for given simple part family, using group technology		
		concepts to and make proper grouping as per their attributes.		
		Recognize use of robotics, programmable logic controllers,		
		microcontrollers and recent advances in the field of		
		manufacturing		

Sr. No	Unit No.	Practical Exercises (outcomes in Psychomotor Domain)	Approx Hours. required
1		Presentation on "How it's made": Faculty will assign any one part from Annexure-I. (Each student will have different part in a batch). Student will download movies/content and will present with the concept "How it's made". Note: Each student will make his/her folder having the name as <bach number="" number_enrollment=""> and will save his/her downloaded content.</bach>	04



2	II	<ul> <li>GT codes:</li> <li>Faculty will ask each student to bring at least one component having mechanical features and having more than 5-6 machining operations. Each student will also prepare the drawing and process plan (As per attached Annexure-II). Then the data will be interchanged by batch students. Collection of parts and making drawing and process plans will be as home assignment. Faculty will assign this task in very first period of practice. Students would: <ul> <li>a. Prepare drawing of part brought by the student.</li> <li>b. Prepare process plan as per Annexure-II for the part brought by student.</li> <li>c. Interchange part drawings and process plans. (No photo copies are allowed. Each student in a batch will have total drawings and process plans equal to number of students in a batch who have brought parts. This may be also given as home assignment).</li> <li>d. Prepare feature matrix.</li> <li>e. Select GT coding system and assign GT code to each part.</li> </ul> </li> </ul>	04
3	III	<ul> <li>FMS layout: Students would:</li> <li>a. Develop part family (May be 3-6 parts) from all parts.(Taken in Ex. No. 2 above.) This is to be carried out logically from feature matrix.</li> <li>b. Assume quantities of each part of part family developed in a. above.</li> <li>c. Assume additional data for following: <ol> <li>Number of shifts and working hours in each shift.</li> <li>Average number of working days in a month.</li> <li>Utilisation factor of FMS unit.</li> </ol> </li> <li>d. Prepare process time matrix. (Suggested format is attached as per Annexure-III).</li> <li>e. Determine type and number of work stations.</li> <li>f. Perform necessary calculations and prepare conceptual FMS layout</li> </ul>	06



		Demonstration: Students would:	
		a. Demonstrate working of following:	
		i. Robot-anyone.	
		ii. Sensors-each one from force & torque type,	
		velocity and acceleration type, proximity type,	
		position type and vision type.	
4	IV	iii.PLC-anyone.	06
		iv. MC-anyone.	
		v. Control system-anyone.	
		b. Sketch following.	
		i. Configuration sketch of robot demonstrated.	
		ii. Working sketch of sensors demonstrated.	
		iii. Block diagrams of PLC and MC demonstrated.	
		iv. Circuit diagram of control system demonstrated.	
		Mini project (In the group of 4-6 students): Students would:	
		a. Prepare at least one from the following (as approved by the	
		faculty):	
		i. Prepare simple circuit using application of sensor.	
		ii. Prepare simple robot using available kit.	
		iii. Prepare ladder diagram for any one real life	
		PLC application.	
5	A 11	iv. Build and operate the functionality of basic	06
3	All	or advance logic gates.	06
		b. Prepare report which includes sketches, specifications,	
		observation tables, parameters, truth tables, applications,	
		etc. (as applicable).	
		c. Present the project.	•
1		Total	26

# Laboratory Course Assessment:

<b>ISE-1:</b>	First Two experiments (20 Marks)
<b>ISE-2:</b>	Remaining three experiments (30 M)



# **Reference Books:**

Sr.	Title of Book	Author	Publication
No.			
i.	CAD/CAM/CIM.	P. Radhakrishnan &	New Ag
		S. Subranarayan.	Intentional e
ii.	Computer Design &	Bedworth,	McGraw Hil
	Integrated	Wolfe and	International 1
	Manufacturing.	Anderson	Publication.
iii.	Mechatronics.	-	HMT
iv.	Introduction to Robotics.	Arthur J. Critchlow	McMillan
			publication
v.	Robotics for engineers.	Yorom Koran	McGraw Hil
			Publication 1
vi.	Computer aided manufacturing.	Rao, Tiwari &	Tata McGraw
		Kundra.	Hill Publication
vii.	Computer Aided Design &	Dr Sadhu Singh.	KP
	Manufacturing.		
iii.	Computer Integrated Manufacturing.	S.K.Vajpayee.	PHI
ix.	Automation, Production and	Mikell P. Groover.	PHI
	Computer integrated		
	Manufacturing.		
х.	Mechatronics.	Bradleg and Offers.	Chapman an
			Hall d
xi.	Practical Robotics.	Willium C. Burns Jr.	PHI
		& Janet Evans	
		Worthington	
xii.	Basic electronics.	Mehta, V.K.	S.Chand
			Publication, New
			Delhi.



Course Code	Course Name	Teach (H	ing Sche rs/week)	eme		Credits Assigned		
		L	Т	Р	L	Т	Р	Total
25PEC13ME112	Industrial			2			1	1
	Engineering	Examination Scheme						
	and		ISE1	MSE	ISE2	ESE		Total
	Operations	Theory						
	Research	Lab	20		30			50

Pre-requisite Course Codes	None			
	CO1	Demonstrate to Calculate standard time for all the operations.		
		Apply work measurement technique to analyze the		
Course Outcomes	CO2	time components involved machining operation of		
		given job using stop watch		
Course Outcomes	CO2	Prepare chart of Sequence of operation for manufacturing of		
	COS	simple job		
	CO4	Prepare supply chain management chart for online		
	C04	purchase of goods/products		

Module No.	No.	Experiments List	Expts. No.		
	1	Experiment for Merit rating and Job Evaluation using pack of cards	2		
Crown A	2	Study Experiment using pin board	expts.		
Group A	3	Study Experiment using two Handed process Chart	Out of		
	4	Study experiment on Multiple Activity Chart (Or) Man Machine Chart	4		
	1	Analyze the motions involved in machining operation of the given job	1		
Group B	2	Apply work measurement technique to analyze the time components involved in machining operation of given job using stop watch	expts.		
	3	Calculate standard time for all the operations involved in step turning process, or any other process.	3		
Group C	1	Prepare supply chain chart in day-to-day situation like supply of cold drink/tooth paste/any grocery item.	2		
	2	Prepare Supply Chain Management Chart For Online Purchase Of Goods/Products.	Out of		
	3 Prepare detailed process plan for manufacturing of simple job.				
		Total	5		
			expts.		



# Laboratory Course Assessment: Group A: at least two experiments

Group B: at least one experiments Group C: at least two experiments

**<u>ISE-1:</u>** Two experiments from Group A (20 Marks)

**ISE-2:** One experiment from Group B and 2 experiment from Group C (30 Marks)

# **Reference Books:**

- 1. Production and Operations analysis by Steven Nahmia , McGraw-Hill / Irwin publication
- 2. Facilities Planning 4th Edition by James A. Tompkins, John Wiley and Sons Inc.
- 3. Elements Of Production Planning And Control by Eilon, Samuel, New York: Macmillan
- 4. Production Planning and Control by Prof. Jhamb L.C. by Everest Publishing House
- 5. Production (Operations) Management by Prof. Jhamb L.C. by Everest Publishing House
- 6. Inventory Management Prof. Jhamb L.C. by Everest Publishing House
- 7. Operations Management- an Integrated Approach 5th Edition by R. Dan Reid, Wiley
- 8. Production and Operations Management by R. Panneer selvam, Prentice-Hall Of India
- 9. Operations Management for Competitive Advantage by Richard B. Chase, MGH
- 10. Orlicky's Material Requirements Planning, by Carol Ptak, McGraw Hill.
- 11. Enterprise resource planning: concepts and practice by Vinod kumar Garg PHI Learning



Course Code	Course Name	Teachi (Hr	(	Credit Assigned				
		L	Т	P	L	Т	Р	TOTAL
	Industrial Robotics	2	1		2	1		3
25DEC12ME25								
25PEC13ME25			ISE1	MSE	ISE2	ES	SE	Total
		Theory	20	30	20	30		100
		Tutorial	20		30	-	-	50

Pre-requisite	None	
<b>Course Codes</b>		
Course Code	CO1	Understand basic anatomy of a robot system
	CO2	Understand working of various sensors and Robot Peripherals
	CO3	Understanding Robot Direct and Inverse Kinematics
	CO4	Demonstrate an understanding of robot intelligence and task
		planning

Modules	Topics	Ref.	Hrs.
No.			
1	<b>Introduction to Automation:</b> robotics, Robotic system & Anatomy, Classification and Future Prospects. <b>Drives</b> Control Loops, Basic Control System Concepts & Models, Control System Analysis, Robot Activation & Feedback Components, Position & Velocity Sensors, Actuators and Power Transmission system.	1	2
2	<ul> <li>Robot &amp; its Peripherals</li> <li>End Effecters: Type mechanical and other grippers, Tool as end effecter.</li> <li>Sensors: Sensors in Robotics, Tactile Sensors, Proximity &amp; Range Sensors, Sensor Based Systems, Vision systems and Equipment</li> </ul>	1,2	4
3	Machine vision Introduction, Low level & High level Vision, Sensing & Digitizing, Image Processing & analysis, Segmentation, Edge detection, Object Description & recognition, interpretation and Applications.	2	5



4	<b>Robot Kinematics:</b> Forward, reverse & Homogeneous Transformations, Manipulator Path control and Robot Dynamics. Introduction to wheeled and legged robots including humanoids	1	5
5	<b>Robot Intelligence &amp; Task Planning:</b> Introduction, State space search, Problem reduction, use of predictive logic, Means. Ends, Analysis, Problem solving, Robot learning and Robot task planning.	1	5
6	<b>Robot application in manufacturing:</b> Material transfer, machine loading & unloading, processing operation, Assembly & inspectors, robotic Cell design & control, Social issues & Economics of Robotics.	1	5
		TOTAL	26

#### Course Assessment:

## Theory :

<u>ISE-1:</u>	Quiz (20 Marks)
---------------	-----------------

ISE-2: Quiz (20 Marks)

- MSE: 90 minutes of written examination based on 50% syllabus (30 Marks)
- **ESE:** 90 minutes of written examination based on the rest of the syllabus covered after

# <u>Tutorial :</u>

ISE-1: A	ssignment of	first 3 mod	dules (20	Marks)
----------	--------------	-------------	-----------	--------

ISE-2: Assignment on last 3 modules (20 Marks) Simulation of Robot Kinematics on Matlab (10 marks )

## **Recommended Books :**

- 1. Industrial Robotics, Technology, Programming & Applications, Grover, Weiss, Nagel, Ordey, Mc Graw Hill.
- 2. Robotics: Control, Sensing, Vision & Intelligence, Fu, Gonzalex, Lee, Mc Graw Hill.
- 3. Robotic technology & Flexible Automation, S R Deb. TMH.
- 4. Robotics for Engineers, Yoram Koren, Mc Graw hill.
- 5. Fundamentals of Robotics, Larry Health.



Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned					ed	
		L	Т	Р	L	Т	Р	Total
	Modelling and Simulation	2	1		2	1		3
25DEC12ME26		Examination Scheme						
25FEC15WIE20			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	100	
		Tutorial	20		30			50

Pre-requisite Course Codes	Basic	s Mathematics.
	CO1	Explain the fundamental concepts of simulation, queuing systems, and inventory systems.
	CO2	Explain the process of generating random numbers using different techniques.
	CO3	Apply heuristic methods to develop simulation models and demonstrate the generation of random variates using different techniques.
Course Outcomes	CO4	Explain the analysis of simulation data, including input modelling, verification, and validation of the model.
	CO5	Apply output analysis techniques to evaluate different types of simulations, analyze stochastic output data, and assess performance measures in terminating and steady-state simulations.

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	<b>Introduction to Simulation:</b> Simulation, Advantages, Disadvantages, Areas of application, System environment, components of a system, Model of a system, types of models, steps in a simulation study.	1-6	6
	1.2	<b>Simulation Examples</b> : Simulation of Queuing systems, Simulation of Inventory System, Other simulation examples.	1-6	



2 21 General I	Principles. Concepts in discrete - event simulation	1_6	
event sch	aduling/Time advance algorithm simulation using	1-0	
event sch	aduling Time advance argoritim, simulation using		Δ
2.2 Random	Numbers: Properties Generations methods Tests	1.6	-
for Dan	dom number Frequency test Puns test	1-0	
Autocorre	lation test		
Autocone	Variata Concration: Inverse Transform	1.6	
5 5.1 Kalluolli Toobniqu	Functional Uniform Weibull Triangular	1-0	
distributio	- Exponential, Unitolini, Welbull, Inaliguial		
normal	Distributions convolution methods Erlang		5
distributic	Distributions, convolution methods- Enang		5
3.2 Ontimise	tion Via Simulation: Magning, difficulty, Pobust	1.6	
<b>5.2</b> Optimisa	Pandom Search	1-0	
Heuristics	, Kandoni Search.		
A A1 Analysis	of Simulation Data:	1.6	
<b>4 4.1</b> Analysis	adalling: Data collection Identification and	1-0	
distributio	when with data parameter estimation Goodness of fit		6
tests Sel	of with data, parameter estimation, Goodness of in		0
and time of	veries analysis		
<b>A 2</b> Vorificati	ion and Validation of Model Model Ruilding	1.6	
4.2 Verificati	on Calibration and Validation of Models	1-0	
5 51 Output A	nalysis Types of Simulations with Pespect to	1.6	5
S S.I Output A	values Stochastic Nature of output data Measures	1-0	5
of Derfor	mance and their estimation. Output analysis of		
terminatir	a simulation Output analysis of stordy state		
	ig sinulation, Output analysis of steady state		

## **Tutorial:**

Sr. No.	Tutorial Details	Hours
1	Queuing systems.	01
2	Frequency test.	01
3	Runs test.	01
4	Autocorrelation test.	01
5	Random Variate Generation.	01
6	Goodness of fit tests.	01
7	Multivariate and time series analysis.	01



8	Output Analysis.	01
	Total Hours	08

#### **Course Assessment:**

Theory:

<u>ISE-1:</u> Activity: Quizzes/Assignment on first two modules (20 Marks) <u>ISE-2:</u> Activity: Quizzes/Assignment on last three modules (20 Marks) <u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus <u>ESE:</u> 90 minutes 30 Marks written examination based on remaining syllabus after MSE

## <u>Tutorial:</u>

#### ISE-1

First Four tutorials (20 marks) Continuous pre-defined rubrics-based evaluation for 20 marks. **ISE-2** Next four tutorials (30 marks) Continuous pre-defined rubrics-based evaluation for 30 marks

#### **Recommended Books:**

1.Jerry Banks, John S Carson, II, Berry L Nelson, David M Nicol, Discrete Event system Simulation, Pearson Education, Asia, 4th Edition, 2007, ISBN: 81-203-2832-9.

2.Geoffrey Gordon, System Simulation, Prentice Hall publication, 2nd Edition, 1978, ISBN: 81-203-0140-4.

3. Averill M Law, W David Kelton, Simulation Modelling & Analysis, McGraw Hill International Editions – Industrial Engineering series, 4th Edition, ISBN: 0-07-100803-9.

4.Narsingh Deo, Systems Simulation with Digital Computer, PHI Publication (EEE), 3rd Edition, 2004, ISBN : 0-87692-028-8.

5. Frank L. Severance, "System Modeling and Simulation"

6. Trivedi K. S., "Probability and Statistics with Reliability, Queueing, and Computer Science Applications", PHI, 1982.



# Links for online NPTEL/SWAYAM courses:

- 1. <u>https://onlinecourses.nptel.ac.in/noc24_ch76/preview</u>
- 2. https://onlinecourses.nptel.ac.in/noc22_ph42/preview
- 3. https://onlinecourses.nptel.ac.in/noc19_ph11/preview



Course Code	Course Name	Teachi (H1	ing Sch :s/week	eme	C	Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
		2	1		2	1		3	
25DEC12ME27	Design of Mechanical		Ε	xamina	tion Sc	heme			
25FECI5WIE27	Systems		ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	30	100		
		Tutorial	20		30		4	50	

Pre-requisite Course Codes	Engineering Mechanics, Strength of Materials, Machine Design					
	CO1	Apply the concept of system design.				
	CO2	Select appropriate gears for power transmission on the basis of given load and speed				
<b>Course Outcomes</b>	CO3	Design material handling systems such as hoisting mechanism of EOT crane,				
	CO4	Design belt conveyor systems				
	CO5	Design engine components such as cylinder, piston, connecting rod and crankshaft				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Methodology & Morphology of design, Optimum design, system	1-7	2
		concepts in design.		
2	2.1	Design of Transmission Gear Box:	1-	6
		Single stage and Two stage Gear box with fixed ratio consisting	7,9	
		of Design of spur and helical Gears, Design concept for bevel and		
		worm and worm wheel gear pairs.		
3	3.1	Design of Hoisting Mechanism:	1-7,	6
		Design of Snatch Block Assembly including Rope Selection,	10	
		Sheave, Hook, Bearing for hook, cross piece, Axle for sheave		
		and shackle plate, Design of rope drum, selection motor with		
		transmission system.		
4	4.1	Design of Belt Conveyors:	1-7,	4
		Power requirement, selection of belt, de-sign of tension take up	10	
		unit, idler pulley		
5	5.1	Engine Design (Petrol and Diesel):	1-7,	6
		Design of cylinder, Piston with pin and rings, connecting rod	9	
		& crank shaft with bearings		



Total	26

#### Tutorial:

Sr. No.	Tutorial Details	Hours		
1	Design of Transmission Gear Box	02		
2	Design of EOT Crane	02		
3	Design of Belt Conveyor	02		
4	Design of IC Engine	02		
Total Hours				

#### **Course Assessment:**

#### Theory:

<u>ISE-1:</u> Quiz (20 marks) <u>ISE-2:</u> Quiz (20 marks) <u>MSE:</u> 90 minutes 30 Marks written examination based on 50% syllabus <u>ESE:</u> 90 minutes 30 Marks written examination based on remaining syllabus after MSE

## Tutorial:

**ISE-1:** Design exercises on first two tutorials: (20 Marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

**ISE-2:** Design exercises on next two tutorials (20 Marks) Software Modelling of any one mechanical system (10 Marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

## **Recommended Books:**

#### **Text Books:**

- 1. "Machine Design Exercises", S.N.Trikha New Delhi Khanna Publisher 1978.
- 2. "Mechanical Engineering Design", Shigley J E and Mischke C R,11th Edition 2019, McGraw Hill, ISBN: 9788184956207.
- 3. "Design of Machine Elements", Bhandari VB,5th Edition 2020, TMH,ISBN: 9789390177479
- 4. "Machine Design", Black PH and O Eugene Adams, 3rd Edition, McGraw Hill ISBN 10:



0070055246

- 5. "Design Data", P.S.G. College of Technology, Coimbatore. ISBN: 978-8192735504
- 6. "Engineering Design", Dieter G E, McGraw Hill Inc, ISBN: 9781260113297
- "Mechanical System Design", SP Patil, 2nd Edition., JAICO Publishing House ISBN: 978-8179923153
- 8. "Gear Design Handbook", Gitin Maitra, 2nd Edition, ISBN: 978-0074602379
- 9. "Design Data Book- Design of engine parts", Khandare S.S & Kale A.V, 2nd Edition, ISBN: 978-9352654260
- 10. "Material Handling Equipment", Rudenko, 2nd Edition, M.I.R. publishers, Moscow

# **Reference Books:**

- 11. "Mechanical design analysis", MF Spotts, 3rd Edition, Prentice Hall Inc.
- 12. "Machine Design-An Integrated Approach", Robert L. Norton,6th Edition, Pearson Education, ISBN: 9780135184233
- 13. "Material Handling Equipments", N. Rudenko, Peace Publication
- 14. "Material Handling Equipments", Alexandrov,5th Edition, Mir Publication ISBN: 9780714717456
- 15. Machine Desgin", Reshetov, Mir Publication 1978.
- 16. "Machine Design", R.C.Patel, Pandya, Sikh, Vol -I & II,12th Edition, C. Jamnadas& Co.
- 17. "Design of Machine Elements", 4th Edition, V. M. Faires, ISBN: 978-0023359507

# Links for online NPTEL/SWAYAM courses:

1. <u>https://onlinecourses.nptel.ac.in/noc22_me62</u> - Gear And Gear Unit Design: Theory and Practice, IIT Kharagpur

2. https://nptel.ac.in/courses/112/106/112106137/ - Machine Design-II, IIT Madras



Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned						ned	
		L	Т	Р	L	Т	Р	Total	
	Product Design and Development	2	1		2	1		3	
25DEC12ME29		Examination Scheme							
25PEC15ME28			ISE1	MSE	ISE2	ESE	Total		
		Theory	20	30	20	30	]	00	
		Tutorial	20		30			50	

Pre-requisite Course	Mach	ine Design				
Codes						
	CO1	Describe the process of product design & development.				
	CO2	Employ engineering, scientific, and mathematical principles				
		to develop and execute a design project from a concept to a				
		finished product.				
	CO3	Apply the principles of DFMA and other DFX principles in				
		product design.				
<b>Course Outcomes</b>	CO4	Analyze products based on ergonomics and aesthetic				
		aspects.				
	CO5	Apply value engineering and software solutions in product				
		design.				
	CO6	Illustrate various modern approaches like concurrent				
		engineering, product life cycle management, robust design,				
		rapid prototyping / rapid tooling.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction: Definition of product design, Various phases	1-3	2
		in product development and Design, The Design Process,		
		Considerations in product design		
	1.2	Planning for products: Establishing markets - market	1-3	1
		segments - relevance of market research.		
	1.4	Materials: Overview of materials including new generation	1-3	1
		materials, Tailor made material concepts, Material selection		
		process.		
2	2.1	Identifying customer needs: Voice of Customer (VoC),	1-3	2
		Customer populations, Hierarchy of human needs, Need		



		gathering methods, Establishing engineering characteristics, Competitive benchmarking, Quality Function Deployment (QFD), House of Quality (HoQ), Product design specification, Development of product design with specifications using QFD, Relevant case studies.		
3	3.1	The design processes: Descriptive and prescriptive design models, Concept development & evaluation, Pugh's total design activity model Conceptual Design: Market research, Generation, Selection and Embodiment of concept, Product Architecture, Customer centric product designing	1-3	2
	3.2	<b>Creativity:</b> Role of creativity in problem solving, Vertical and lateral thinking, Brain storming, Synectics, Group working dynamics, Adaptation to changing scenarios in economics, social, cultural and technological fronts, Anticipation of new needs and aspirations.		1
4	4.1	<b>Product Ergonomics:</b> Anthropometry, Environmental conditions, thermal, noise, vibration, displays, illusions, Psycho and psychological aspects in design, Man-machine information exchange.	1-3	2
	4.2	<b>Product Aesthetics:</b> Visual awareness, Form elements in context of product design, Concepts of size, shape and texture, Introduction to colour and colour as an element in design, Colour classifications and dimensions of colour, Colour combinations and colour dynamics, Interaction / communication of colours, Psychological aspects of colours, generation of products forms with analogies from nature.	1-3	1
	4.3	<b>Product Graphics:</b> Graphics composition and layout, Use of grids in graphics composition, Study of product graphics and textures.	1-3	1
5	5.1	<b>Design for Manufacturing:</b> Guidelines and Methodology, Producibility requirements, Accuracy and Precision requirements, Strength considerations in Design: Criteria and objectives, Designing for uniform strength, Designing for stiffness and rigidity, Practical ideas for material saving in design - ribs, corrugations, rim shapes, bosses, laminates, etc.	1-3	2



5.2Design for forged and Cast components, Design for Sheet Metal processed components, powder metallurgical components, Expanded metals and wire forms1-325.3Design for Assembly (DFA): DFA Index, Analysis of assembly requirements, Standardization, Ease of Assembly and disassembly, Design for bolted, welded and riveted components, Design for hinge and snap fit assemblies, maintenance, consideration of handling and safety, Modular concepts.1-3166.1Value Engineering: Product value and its importance, analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises.1-316.2Software solutions: Software for drafting, modeling, assembly, detailing, CAM interfacing, Rapid tooling/rapid1-31					
5.3Design for Assembly (DFA): DFA Index, Analysis of assembly requirements, Standardization, Ease of Assembly and disassembly, Design for bolted, welded and riveted components, Design for hinge and snap fit assemblies, maintenance, consideration of handling and safety, Modular concepts.1-325.4Other DFX Principles: Designs for Maintainability, Safety, Reliability, Sustainable Design1-3166.1Value Engineering: Product value and its importance, analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises.1-316.2Software solutions: Software for drafting, modeling, assembly, detailing, CAM interfacing, Rapid tooling/rapid1-31		5.2	Design for forged and Cast components, Design for Sheet Metal processed components, powder metallurgical	1-3	2
5.3Design for Assembly (DFA): DFA Index, Analysis of assembly requirements, Standardization, Ease of Assembly and disassembly, Design for bolted, welded and riveted components, Design for hinge and snap fit assemblies, 			components, Expanded metals and whe forms		-
5.4Other DFX Principles: Designs for Maintainability, Safety, Reliability, Sustainable Design1-3166.1Value Engineering: Product value and its importance, Value analysis job plan, Steps to problem solving and value analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises.1-316.2Software solutions: assembly, detailing, CAM interfacing, Rapid tooling/rapid1-31		5.3	<b>Design for Assembly (DFA):</b> DFA Index, Analysis of assembly requirements, Standardization, Ease of Assembly and disassembly, Design for bolted, welded and riveted components, Design for hinge and snap fit assemblies, maintenance, consideration of handling and safety, Modular concepts.	1-3	2
66.1Value Engineering: Product value and its importance, Value analysis job plan, Steps to problem solving and value analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises.1-316.2Software solutions: assembly, detailing, CAM interfacing, Rapid tooling/rapid1-31		5.4	<b>Other DFX Principles:</b> Designs for Maintainability, Safety, Reliability, Sustainable Design	1-3	1
6.2 Software solutions: Software for drafting, modeling, 1-3 1 assembly, detailing, CAM interfacing, Rapid tooling/rapid	6	6.1	Value Engineering: Product value and its importance, Value analysis job plan, Steps to problem solving and value analysis, Value analysis tests, Value Engineering idea generation check list, Material and process selection in value engineering, Cost reduction, case studies and exercises.	1-3	1
prototyping, etc.		6.2	<b>Software solutions:</b> Software for drafting, modeling, assembly, detailing, CAM interfacing, Rapid tooling/rapid prototyping, etc.	1-3	1
6.3 Modern Applications: Concurrent Engineering, Robust 1-3 4 Design Additive Manufacturing/Rapid Prototyping Product		6.3	<b>Modern Applications:</b> Concurrent Engineering, Robust	1-3	4
Life Cycle Management techniques and application areas.			Life Cycle Management techniques and application areas.		
Total 26			Total		26

## **Tutorial:**

Sr. No.	Tutorial Details	Hours
1	House of quality	01
2	Concept Generation and Selection	02
3	Industrial Design	02
4	Value Engineering / Robust Design / Modern Approaches	02
5	DFX Principles	01
	Total Hours	08

# **Course Assessment:**

**Theory: ISE-1:** Quizzes on first three modules (20 Marks)


**ISE-2:** Quizzes on next Three modules (20 marks) **MSE:** 90 minutes 30 Marks written examination based on 50% syllabus **ESE:** 90 minutes 30 Marks written examination based on remaining syllabus after MSE

# Tutorial:

**ISE-1:** Assignment on first two tutorials (20 Marks) Continuous pre-defined rubrics-based evaluation for 20 marks.

**ISE-2:** Assignment on remaining three tutorials (30 marks) Continuous pre-defined rubrics-based evaluation for 30 marks.

#### **Recommended Books:** Text Books:

- 1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development," 4th Edition, 2009, Tata McGraw-Hill Education, ISBN-10-007-14679-9.
- 2. Kevin Otto, Kristin Wood, "Product Design," Indian Reprint 2004, Pearson Education, ISBN 9788177588217.
- 3. Product Design and Manufacturing R.C. Gupta, A.K. Chitale PHI, 2011

# **Reference Books:**

- 1. Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction," 3rd Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7.
- 2. George E. Dieter, Linda C.Schmidt, "Engineering Design," 4th Edition, McGraw-Hill International Edition, 2009, ISBN 978-007-127189-9.
- 3. Yousef Haik, T. M. M. Shahin, "Engineering Design Process," 2nd Edition Reprint, Cengage Learning, 2010, ISBN 0495668141.

# Links for online NPTEL/SWAYAM courses:

- 1. Product Design and Manufacturing by Prof. J. Ramkumar, Prof. Amandeep Singh | IIT Kanpur <u>https://onlinecourses.nptel.ac.in/noc21_me66/preview</u>
- 2. Product Design and Development by Prof. Inderdeep Singh, IIT Roorkee <u>https://onlinecourses.nptel.ac.in/noc21_me83/preview</u>



Course Code	Course Name	Teaching Scheme (Hrs/week)		C	redits Assig	gned	l	
25PEC13ME29	Robotics and Control Engineering	L	Т	Р	L	Т	Р	Total
				2			1	1
		Examination Scheme						
			ISE1	MSE	ISE2	ESE		Total
		Practical	20		30			50

Pre-requisite Course Codes	None	
Course Outcomes	CO1	Design and Develop Kinematic of an Industrial Robotic arm
	CO2	Develop machine vision based image processing techniques
	CO3	Develop Solution for Trajectory planning in robots
	CO4	Be able to check system stability by Root Locus or Bode Plot

Experim ent No.	Experiments	Ref	Hrs.
1	Edge detection	1	04
2	segmentation using image processing	1	05
3	Programming the robots to solve direct and inverse kinematics problems	1	05
4	Trajectory planning for Robots	1	04
5	Checking Stability of a system using Root Locus	3,4,5	04
6	Checking stability of a system using Bode Plot	3,4,6	04
	Total		26

# **Course Assessment:**

## Laboratory work:

# 1. ISE-1 (20 marks)

Submission of the Circuit Diagrams made during the lab performance for the first 4 practicals covered during this assessment duration. Assessment will be based on pre-defined rubrics.

## 2. ISE-2 (30 marks)

Submission of the Programs made during the lab performance for the last 5 practicals covered during this assessment duration. Assessment will be based on pre-defined rubrics (20 marks). Lab interaction: (10 marks)



# **Reference Books:**

- 1. "Introduction to Robotics: Mechanics and Control" John J. Craig
- 2. "IoT: Building Arduino-Based Projects" Peter Waher
- 3. Katsuhiko Ogata, "Modern Control Engineering", 5th Edition, Pearson, 2010.
- 4. **Rao V. Dukkipati**, "Analysis and Design of Control Systems using MATLAB", New Age International, 2006.
- 5. MATLAB Documentation, "Root Locus Analysis using rlocus()",
- 6. MATLAB Documentation, "Bode Plot Analysis using bode()"



Course Code	Course Name	Teaching Scheme (Hrs/week)			Cre	edits As	ssign	ied
25PEC13ME210	Product Design	L	Т	Р	L	Т	P	Total
				2			1	1
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	]	<b>Fotal</b>
		Lab	20		30			50

e Cours	se Product Design and Development				
CO1	Identify the need for developing products				
CO2	Select suitable PD&D processes				
CO3	Apply the creativity & industrial design methods to design & develop the				
	chosen product				
CO4	Work collaboratively in a team to complete a PD&D project.				
CO5	Effectively communicate the results of projects and other assignments				
	in written and oral format.				
	e Cour CO1 CO2 CO3 CO4 CO5				

Module	Topics
No.	
	(All the following design exercises are to be treated as course project on product
	redevelopment to be completed by a group of 4 to 5 students. The results are to be
	documented and presented.)
1	Identification of Customer Needs
2	Conversion of Voice of Customer into Voice of Company
3	Concept Generation and Selection
4	Industrial Design Aspects
5	DFMA and other DFX Considerations
6	Development of the Model of redesigned Product and Analysis (if any)

# **Course Assessment:**

Lab:

ISE:

1. ISE-1

Submission of report and presentation on first 2 modules of the course project Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

Submission of report and presentation on last 4 modules of the course project



Continuous pre-defined rubrics-based evaluation for 30 marks.

## Recommended Books: Text Books:

- 1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development," 4th Edition, 2009, Tata McGraw-Hill Education, ISBN-10-007-14679-9.
- 2. Kevin Otto, Kristin Wood, "Product Design," Indian Reprint 2004, Pearson Education, ISBN 9788177588217.
- 3. Product Design and Manufacturing R.C. Gupta, A.K. Chitale PHI, 2011

# **Reference Books:**

- 1. Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction," 3rd Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7.
- 2. George E. Dieter, Linda C.Schmidt, "Engineering Design," 4th Edition, McGraw-Hill International Edition, 2009, ISBN 978-007-127189-9.
- 3. Yousef Haik, T. M. M. Shahin, "Engineering Design Process," 2nd Edition Reprint, Cengage Learning, 2010, ISBN 0495668141.



Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
			L	Т	Р	L	T	Р	Total
25MDM05	Public Relations and Corporate Communication (Semester-VI)		2			2			2
		Examination Scheme							
			ISE1		ISE2	F	SE		Total
	()	Theory	50		50				100

Pre-requisite Course Codes	SLRV	W Skills
	CO1	Develop professional communication skills through training and practice
Course Outcomes	CO2	Draft professional documents with precision
	CO3	Develop effective communication strategies for diverse, cultural and global business environment

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Professional Communication Skills	R-	5
			1,3	
	1.1	Resume Writing & Cover Letter for Employment		
	1.2	Group Discussion		
	1.3	Formal dressing		
	1.4	Communication – language and articulation		
	1.5	Interview Techniques		
	1.6	Formal email writing		



2		Synergy Communication	R-4	4
	2.1	Presentation Skills – creating and delivering presentations		
	2.2	Report Writing- Importance, Objective, type – versioning and storage		
	2.3	Meetings and Documentation: Notice, Agenda, Minutes		
	2.4	Phone and video communication		
3		Cross-Cultural Communication	R- 2,4	3
	3.1	Cultural awareness		
	3.2	Language barriers		
	3.3	Global communication strategies		
	3.4	Corporate etiquettes		
4		Corporate Identity and Branding	R-5	3
	4.1	Corporate image and reputation		
	4.2	Branding strategies		
	4.3	Visual identity		
	4.4	Messaging and tone		
	4/5	Cultural context of branding		
	1	Total	I	15

Assessment:



Sr. No.	List of Written and Oral Assignments	ISE	Marks
1	Resume/ Cover Letter	ISE1	10
2	GD Practices		10
3	Mock Interview HR Question		10
4	Team Building Activity		10
5	Notice & Agenda and Minutes of the Meeting		10
6	Formal presentation	ISE2	10
7	GD Practices		20
8	Mock Interview HR Question	1	20
	Total (Average)		100

#### **Recommended Textbooks:**

- 1) Dr. K.Alex, Soft Skills- Know Yourself & know the World, S.Chand
- 2) John Hayes, Interpersonal Skills at Work, McGraw Hill Education
- 3) Ankur Malhotra, Campus Placement: A Comprehensive Guide, McGraw Hill Education
- 4) Meenakshi Raman, Sangeeta Sharma, Communication Skills, Oxford, India
- 5) Courtland L. Bovee, Business Communication Today, Pearson



1.1. 1.g. 101 1.011 a, Danara (11), 1.1 a	
(Autonomous College affiliated to University of Mumbai)	

Course Code		Course	Name	Teaching Scheme (Hrs/week)			Credits Assigned				
				L	Т	Р	L	Т	Р	Total	
						2			1	1	
25VSE13ME04		204 Measurements and Systems Lab		Examination Scheme							
					ISE1	MSE	ISE2	ESE	Total		
				Practical	20		30		50		
Pre-ree	quisite C	ourse Codes	None								
			CO1 Able to use linear and angular measuring instruments.								
			CO2 Understand and use the slip gauges.								
Course Outcomes			CO3 Able to use the optical profilometer.								
			CO4 Perform flatness testing using principle of interference.								
			Able to use the mechanical comparator to accept or reject							ect a	
			sample.								
Sr. N	0.	Experiments Details Hour						Hours			
1	Mea	Measurement of linear dimensions using vernier caliper.							3		
2	Mea	Measurement of linear dimensions using micrometer. 3						3			
3	Setti	Setting of dimensions using slip gauges by wringing process.2							2		
4	Mea	Measurement of small dimensions by Optical Profile Projector. 4							4		
5	Iden	Identification of surface flatness defects using principle of interferometry								4	
3	by o	by optical flats and monochromatic light.									
6	Mea	Measurement of components deviations with respect to standard using								4	
0	mecl	mechanical comparator.								т	
		Total					20				

## **Course Assessment:**

## Laboratory work:

## ISE-1 (20 marks)

Submission of the observations made during the lab performance for the first 3 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics.

## ISE-2 (30 marks)

Submission of the observations made during the lab performance for the last 3 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics (20 marks).



Lab interaction: (10 marks)

## **Reference Books:**

- 1. Engineering. Metrology, I.C. Gupta, Dhanpat Rai Publications.
- 2. Engineering. Metrology, 22nd edition, R. K. Jain, Khanna Publisher, (2022).
- 3. Statistical quality Control, 2nd edition, Mahajan M., Dhanpat Rai & Sons, Delhi (2015).
- 4. Quality Control, 3rd edition, D. H. Besterfield, Pearson Education (2012).
- 5. Understanding and Implementing ISO 9000 and ISO Standards, 2nd edition, David L. Goetsch, Stanley Davis, Prentice Hall.



Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned				red		
	CNC Lab	L	Т	Р	L	Т	Р	Total
				2			1	1
25VSE12ME05		Examination Scheme						
25VSEISMEUS			ISE1	MSE	ISE2	ESE	Total	
		Theory						
		Practical	20		30			50

Pre-requisite Course		CAD Modelling.							
Codes									
	CO1	Develop and execute part programming for CNC							
		Turning Trainer to fabricate components							
	CO2	Develop and execute part programming for CNC							
Course Outcomes		Milling Trainer to fabricate components							
Course Outcomes	CO3	Demonstrate CAM Tool path and prepare NC- G code.							
	CO4	Analyze and document the design features,							
		preprocessing in CAM software, and capabilities of a							
		commercial CNC machining center.							

Sr. No	Topics	Hr						
1	Part programming and part fabrication on CNC Turning	6						
	trainer (Involving processes like Step turning, facing,							
	Taper turning, threading, etc.)							
	(One job in a group of 4-5 students)							
2	Part programming and part fabrication on CNC Milling	6						
	trainer (Involving processes like contouring, drilling,							
	facing, pocketing etc.)							
	(One job in a group of 4-5 students)							
3	Tool-path generation by translation of part geometry from	6						
	computer aided design (CAD) to computer aided							
	manufacturing (CAM) systems.							
4	Post processing of Code generated via CAM system.	5						
5	Case Study: Report on a visit conducted to any Commercial	4						
	CNC Machining Centre explaining the Design features, pre							
	processing in CAM software and its capabilities.							
Total								



# **Course Assessment:**

Laboratory: <u>ISE-1: (20 Marks)</u> Experiments 1 to 2 Continuous pre-defined rubrics-based evaluation for 20 marks. <u>ISE-2: (30 Marks)</u> Experiments 3 to 5

- i. Continuous pre-defined rubrics-based evaluation for 20 marks.
- ii. Lab interaction (10 marks).

## **Recommended Books:**

1. CAD/CAM Principles and Applications, P. N. Rao, Tata McGraw Hill Publications

2. CNC Technology and Programming, Krar, S., and Gill, A., McGraw Hill Publishers.

3. CNC Programming for Machining, Kaushik Kumar, ChikeshRanjan, J. Paulo Davim, Springer Publication.