

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050 (Autonomous College affiliated to University of Mumbai)

CURRICULUM STRUCTURE SECOND YEAR UG: B.TECH

MECHANICAL ENGINEERING

REVISION: FRCRCE-1-25

Effective from Academic Year 2025-26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Preamble:

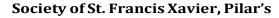
Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries.

Government of Maharashtra has also directed Autonomous Colleges to revise their curriculum in line with National Education Policy (NEP) 2020 through Government Resolution dated 4th July 2023. We commit to ourselves to the effective implementation of UGC Regulations and NEP 2020 in its spirit.

Based on recent recommendations of the GR, we are pleased to offer our holistic curriculum for 2024-28, a "H-Tree Model" of Engineering Education. A unique "H-Tree Model" of Engineering Education Curriculum is carefully designed to systematically develop IQ (Intelligence Quotient), PQ (Physical Quotient), EQ (Emotional Quotient) and SQ (Spiritual Quotient) of a learner. This curriculum aims at the development of an all-rounded personality with holistic approach to education in which learner receives 25% teacher-led learning, 25% peer learning, 25% self-learning and 25% experiential learning. The curriculum model is outcome based that focuses on learning by doing. Curriculum is designed to provide multiple learning opportunities for students to acquire and demonstrate competencies for rewarding careers. It ensures multiple choices to leaner acquiring skills through systematic planning. It has 7 verticals aligned to GR recommendations with strong science, and mathematics foundation and program core, sequel of electives, Multidisciplinary Minor courses, humanities & management courses and sufficient experiential learning through projects and semester-long industry / research internship along with employable skill-based courses. Learner gets an opportunity to acquire skills through NSDC aligned courses during summer vacations. Learner also gets additional option to choose the kind of degree i.e. Honors or Double Minor or Honors with Research.

Various steps are taken to transform teaching learning process to make learning a joyful experience for students. We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units.

Fr. Conceicao Rodrigues College of Engineering


Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Curriculum Structure for UG Programs at Fr CRCE w.e.f. A.Y. 2025-26

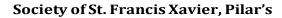
Nome	enclature of the courses in the curriculum
Abbreviation	Title
BSESC	Basic Science & Engineering Science Courses
PCPEC	Program Core and Program Elective Courses
MDC	Multidisciplinary Courses
SC	Skill Courses
HSSM	Humanities, Social Sciences and Management
EL	Experiential Learning
LLC	Liberal Learning Courses
BSC	Basic Science Courses
ESC	Engineering Science Courses
PCC	Program Core Courses
PEC	Program Elective Courses
MDM	Multidisciplinary Minor
OE	Open Elective
VSEC	Vocational and Skill Enhancement Course
VSC	Vocational Skill Courses
SEC	Skill Enhancement Courses
AEC	Ability Enhancement Course
EEMC	Entrepreneurship, Economics and Management Course
IKS	Indian Knowledge System
VEC	Value Education
RM	Research Methodologies
CEFP	Community Engagement or Field Project
ELC	Experiential Learning Courses
PRJ	Project
INT	Internship
CC	Cocurricular Courses
HMM	Honors and Multidisciplinary Minor
DM	Double Minor
RMM	Research and Multidisciplinary Minor

Credit Specification:

- ❖ Theory: 1 credit=13 to 15 hrs of teaching
- ❖ Lab: 1 Credit=26 to 30 hrs of lab work
- ❖ Studio Activities: 1 Credit= 26 to 30 hrs of creative activities
- ❖ Workshop Based Activities: 1 Credit=26 to 30 hrs of hands-on activities related to vocation/professional practice/skill based
- ❖ Seminar/Group Discussion: 1 Credit=13 to 15 hrs of participation
- ❖ Internship: 1 Credit=Per 2 weeks OR 36 to 40 hrs of engagement
- ❖ Field Based Learning/Practices: 1 Credit=26 to 30 hrs of learning activities
- ❖ Community Engagement Projects: 1 Credit=26 to 30 hrs of contact time along with 13 to 15 hrs of activities preparation, report writing, independent reading etc.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)


Credit requirements for four different options of the Degrees:

Degree/SEM	I	II	III	IV	V	VI	VII	VII	Tota
								I	l
B.Tech with	20	20	22	22	22	22	20	20	168
Multidisciplinary Minor									
B.Tech with	20	20	22	22	22	22	20	20	188
Double Minor (Multidisciplinary &		+2	+4	+4	+4*	+4	+2\$	+2\$	
Specialisation Minor)		*	*	*		*			
B.Tech with	20	20	22	22	22	22	20	20	188
Research and Multidisciplinary Minor		+2	+4	+4	+4*	+4	+2\$	+2\$	
		*	*	*		*			

^{*}Optional Credits \$ credits (2) to be earned in VII/VIII Salient Features of Curriculum:

- ✓ Framed as per Government Resolution dated 4th July 2023 in line with National Education Policy (NEP) 2020.
- ✓ Minimum 168 choice-based credit structure with options of Degrees earning additional credits
- ✓ Unique 'H-Tree' Model of Curriculum: Hybrid model for holistic development with happy learning environment having bridge connecting verticals providing unique path for each learner for 3-dimensional growth, Life Long Learning, multiple entry-exit, inclusive model indicating equal distribution of central resources
- ✓ More emphasis on laboratory based and experiential learning
- ✓ More weightage to continuous assessment to reduce examination stress
- ✓ Mandatory Semester-long internship, courses with emotional & spiritual learning and skill-based learning aligned with NSDC framework
- ✓ Well balanced curriculum to attain Program Outcomes and skills of 21st century learner
- ✓ Curriculum is designed to create excitement among learners for education through stories, activities, collaboration, hackathon, contest, case studies, creative art etc.

Curriculum is designed to make graduates responsible citizens of country with future ready skills to handle challenges of 21st Century

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

SEMESTERWISE CURRICULUM STRUCTURE

UG Mechanical Engineering Program:

				SEM-III								
Course Code	Course	Sub-	Course Name		Contact			amination redit = 50			Cre	edits
Course Code	Vertical	Vertical	Course Name		Hours	ISE1	MSE	ISE2	ESE	Total	Points	Total
25BSC12ME05	BSESC	BSC	Statistical Techniques and Partial Differential Equations	TH TU	2	20 20	30	20 30	30	100 50	2	3
25PCC12ME05	PCPEC	PCC	Advanced Manufacturing Processes	TH	2	20	30	20	30	100	2	2
25PCC12ME06	PCPEC	PCC	Engineering Mechanics	TH PR	2 2	20	30	20 30	30	100 50	2	3
25PCC12ME07	PCPEC	PCC	Machine Shop Practice	PR	2	20	-	30	-	50	1	1
25OE01	MDC	OE	Law for Engineers Financial Planning, Taxation and Investment	TH	2	50	-	50	-	100	2	2
25MDMXX1	MDC	MDM	MDM Course-1	TH PR	1 2	10 20	15	10 30	15	50 50	1	2
25MDMXX2	MDC	MDM	MDM Course-2	TH PR	1 2	10 20	15	10 30	15	50 50	1	2
25AEC12ME02X	HSSM	AEC	Modern Indian Language	TH	2	50	-	50	-	100	2	2
25VEC12ME01	HSSM	VEC	Human Values and Professional Ethics	TH PR	1 2	50	-	50	-	100	1	2
25CEP12ME01	EL	CEFP	Community Engagement Project	PRJ	4	50	-	50	-	100	2	2
25LLCXX	LLC	CC	One Course from CC	PR	2	-	-	50	-	50	2	1
			TH	2	20	30	20	30	100	2		
25DMX1	DM	DM	Double Minor Course	TU	2	20	-	30	-	50	2	4#
25HR02	HR	HR	Honors with Research	-	-	-	-	-	-	-	4	4*
25DM01/25RM01	DM/RM	DM/RM	Introduction to Emerging Technologies	TH	2	50		50	-	100	2	2\$
				Total	TH:TU:PR 13:1:16=30			-	-	1100	-	22

\$ DM/HR 2 credits for Later Entry Students in second year

				SEM-IV	7							
Course Code	Course Vertical	Sub- Vertical	Course Name		Contact Hours		(1 C	mination redit=50			Cre	edits
	verticai	vertical			Hours	ISE1	MSE	ISE2	ESE	Total	Points	Total
25BSC12ME06	BSESC	BSC	Thermodynamics	TH	2	20	30	20	30	100	2	3
23B3C12WE00	DSESC	BSC	Thermodynamics	TU	1	20	-	30	1	50	1	,
25PCC12ME08	PCPEC	PCC	Mechanics of Solids	TH	2	20	30	20	30	100	2	3
23FCC12IVIE08	FCFEC	rcc	Wechanics of Solids	TU	1	20	-	30	-	50	1	3
25PCC12ME09	PCPEC	PCC	Materials Science and Engineering	TH	2	20	30	20	30	100	2	3
231 CC12WE09	TCTEC	TCC	Water and Engineering	TU	1	20	-	30	1	50	1	,
25PCC12ME10	PCPEC	PCC	Materials and Material Testing Lab	PR	2	20	-	30	-	50	1	1
25PCC12ME11	PCPEC	PCC	Thermal Engineering Lab	PR	2	20	-	30	-	50	1	1
25OE02	MDC	OE	Emerging Technology and Law Principles of Management	TH	2	50	-	50	- 1	100	2	2
25VSE12ME03	SC	VSEC	Computer Aided Machine Drawing	PR	4	50	-	50	-	100	2	2
25MDMXX3	MDC	MDM	MDM Course-3	TH	1	10	15	10	15	50	1	2
ZSMDMAAS	MIDC	MIDIM	MDM Course-3	PR	2	20	-	30	-	50	1	2
EEM12ME02	HSSM	EEMC	Technology Entrepreneurship	TH	2	50	-	50	-	100	2	2
			Technology Innovation for	TH	1		40			100	1	
25VEC12ME02	HSSM	VEC	Sustainable Development	PR	2	40	-	60	-	100	1	2
25LLCXX	LLC	CC	One Course from CC	PR	2	-	-	50	-	50	2	1
				TH	2	20	30	20	30	100	2	
25DMX2	DM	DM	Double Minor Course	TU	2	20	-	30	i	50	2	4*
25HR03	HR	HR	Honors with Research	-	-	-	-	-	1	-	4	4*
25BC	BC	BC	MOOC	-	-	-	-	-	-	-	-	2\$
		•		Total	TH:TU:PR 12:3:14=29			-	-	1100	-	22

^{\$} Discipline specific additional course to Lateral Entry (Diploma) students from Swayam Plus/Swayam platform

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

				SEM-V								
Course Code	Course	Sub-Vertical	Course Name		Contact			mination M redit=50 M			Cı	redits
Course Coue	Vertical	Sub-vertical	Course Name		Hours	ISE 1	MSE	ISE2	ESE	Total	Points	Total
PCC13ME12	PCPEC	PCC	Fluid Mechanics & Hydraulic Machines	TH PR	2 2	20 20	30	20 30	30	100 50	2	3
PCC13ME13	PCPEC	PCC	Theory of Machines	TH PR	2 2	20	30	20	30	100 50	2	3
PCC13ME14	PCPEC	PCC	CAD/CAM and FEA	TH	2	20	30	20	30	100	2	3
PCC13ME15	PCPEC	PCC	FEA and CFD Lab	TU PR	2	20	-	30	-	50 50	1	1
PCC13ME16	PCPEC	PCC	Industrial Automation	TH	2	20	30	20	30	100	2	2
PCC13ME17	PCPEC	PCC	Metrology and Quality Engineering	TH	2	20	30	20	30	100	2	2
PEC13MEXX	PCPEC	PEC	Program Elective Course	TH	2	20 20	30	20 30	30	100 50	2	3
PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1
OE03	MDC	OE	Health, Wellness and Psychology Emotional and Spiritual Intelligence	тн	2	50	-	50	-	100	2	2
MDMXX4	MDC	MDM	MDM Course-4	TH	1	10	15	10	15	50	1	2
MIDIMAA	MIDC	IVILIVI	WIDW COURSE-4	PR	2	20	-	30	-	50	1	
D) (7/2	DV	DM	D H M G	TH	2	20	30	20	30	100	2	4*
DMX3	DM	DM	Double Minor Course	TU	2	20	-	30	-	50	2	4*
HR04	HR	HR	Honors with Research								4	4*
				Total	TH:TU:PR 15:2:10=27			-	-	1100	-	22

				SEM-VI								
Course Code	Course	Sub-	Course Name		Contact				on Mark 60 Marks		Cre	edits
Course Code	Vertical	Vertical	Course Name		Hours	ISE 1	MS E	ISE 2	ES E	Total	Points	Total
PCC13ME18	DCDEC	P.C.C.	H .T . C	T H	2	20	30	20	30	100	2	,
PCC13ME18	PCPEC	PCC	Heat Transfer	T U	1	20	-	30	-	50	1	3
PCC123 (E10	DCDEC	P.C.C.	W 11 D 1	T H	2	20	30	20	30	100	2	3
PCC13ME19	PCPEC	PCC		T U	1	20	-	30	-	50	1	,
PCC13ME20	PCPEC	PCC	Heat Transfer Lab	PR	2	20	-	30	-	50	1	1
PCC13ME21	PCPEC	PCC	Hydraulics and Pneumatics Lab	PR	2	20	-	30	-	50	1	1
PEC13MEXX	PCPEC	PEC	Program Elective Course	T H	2	20	30	20	30	100	2	3
PECISMEAN	ECISMEAX PCFEC FEC	Program Elective Course	T U	1	20	-	30	-	50	1	,	
PEC13MEXX	PCPEC		T H	2	20	30	20	30	100	2	- 3	
				T U	1	20	-	30	-	50	1	,
PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1
PEC13MEXX	PCPEC	PEC	Program Elective Lab	PR	2	20	-	30	-	50	1	1
OE04	MDC	OE	Public Relations and Corporate Communication	T H	2	50	-	50	-	100	2	2
MDMXX5	MDC	MDM	MDM Course-5	T H	2	50	-	50	-	100	2	2
VSE13ME04	SC	VSEC	Measurements and Systems Lab	PR	2	20	-	30	-	50	1	1
VSE13ME05	SC	VSEC	CNC Lab	PR	2	20	-	30	-	50	1	1
DMX4	DM	DM	Double Minor Course	T H	2	20	30	20	30	100	2	4*
DMX4	DM	DM	Double Minor Course	T U	2	20	-	30	-	50	2	4*
HR05	HR	HR	Honors with Research								4	4*
				Total	TH:TU:PR 12:4:12=28			-	-	1100	-	22

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Structure of Credits to be completed in Final Year (SEM-VII and/or SEM-VIII):

	SEM-VII at d/or SE VI-VIII											
Course Code	Course	Sub-	Course Name		Contact			aminatio Credit=5			Cre	dits
Course Code	Vertical	Vertical	Course Name		Hours	ISE 1	MS E	ISE 2	ES E	Total	Points	Total
	PCPEC	PEC	Program Elective		Online		A	s Per SW	AYAM		12	12
MDM06	MDC	MDM	MDM Course-6 @		Online		A	s Per SW	AYAM		4	4
RMC14ME01	EL	RM	Essentials of Research Methodology		Online		A	s Per SW	AYAM		2	2
RMC14ME02	EL	RM	Intellectual Property Rights		Online		A	s Per SW	AYAM		2	2
PRJ14ME01	EL	PR	Capstone Project	PR	12	100	-	100	-	200	6	6
	PCPEC	PEC	Course Seminar		Online			Rubrics			2	2
DMX5/HR06	DM/HR	DM/RMM	Seminar/Project	PR	4	A	s per Ru	brics for	Seminar/	Project	2*	2*
INT14ME01	EL	INT	Semester long Internship	PR	36-40 hrs		As Pe	r Interns	hip Man	ıal	12	12
			Total								40	40

@MDM should be Technical courses related to MDM

Project or Internship is mutually exclusive in SEM-VII or SEM-VIII

Remaining credits can be acquired in SEM-V to SEM-VIII

- # Online course 1 Credit=4 Week course from SWAYAM can be taken in SEM V to SEM VIII
- # Online min 8 week course from SWAYAM can be taken in SEM V to SEM VIII to complete 2 credit course (Combination of two 4-week credit courses shall be allowed with prior approval)
- * Online min 12 week course from SWAYAM can be taken in SEM V to SEM VIII to complete 3 credit course

List of Program Elective Courses:

Track-1: Manufacturing and Management

SEM-V: Any one Theory:

PEC13ME11: Supply chain management PEC13ME12: Costing and Cost Control

PEC13ME13: Mould and Metal Forming Technology

PEC13ME14: Additive Manufacturing

Lab:

PEC13ME15: Additive Manufacturing

SEM-VI: Any two Theory:

PEC13ME16: Tool Engineering

PEC13ME17: Advanced Materials

PEC13ME18: Optimization Techniques

PEC13ME19: Project Management

PEC13ME110: Industrial Engineering and Operations Research

Lab:

PEC13ME111: Manufacturing Systems

PEC13ME112: Industrial Engineering and Operations Research

Track-2: Design and Automation

SEM-V: Any one Theory:

PEC13ME21: Control Engineering PEC13ME22: Finite Element Analysis PEC13ME23: Dynamics of Machinery

Lab:

PEC13ME24: Condition Monitoring

SEM-VI: Any two Theory:

PEC13ME25: Industrial Robotics

PEC13ME26: Modelling and Simulation

PEC13ME27: Design of Mechanical Systems

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

PEC13ME28: Product Design and Development

Lab:

PEC13ME29: Robotics and Control Engineering

PEC13ME210: Product Design

B.Tech in Mechanical Engineering with Minor Computer Engineering:

Course Code	Computer Engineering Minor Courses	Credits
25MDMXX1	Data Structures and Algorithms	2
25MDMXX2	Database Management System	2
25MDMXX3	Microcontrollers and Applications	2
MDMXX4	AI and Applications	2
MDMXX5	Human Machine Interface	2

B.Tech in Mechanical Engineering with Minor Electronics Engineering:

Course Code	Electronics Engineering Minor Courses	Credits
25MDMXX1	Signals and System	2
25MDMXX2	Digital Electronics	2
25MDMXX3	Microcontrollers and Applications	2
MDMXX4	Linear Integrated Circuits	2
MDMXX5	Industrial Electronics	2

Double Minor Degree in 'Emerging Areas' Offered to Mechanical Engineering Students:

- 1. Name: Internet of Things
 - 1. **DM21:** Sensors and Actuators
 - 2. **DM22:** Fundamentals of IoT
 - 3. DM23: Embedded System and RTOS
 - 4. **DM24:** System Design
- 2. Name: Data Science
 - 1. **DM51:** Statistics for Data Science
 - 2. DM52: Data Analytics and Visualisation
 - 3. **DM53:** Game Theory
 - 4. **DM54:** Web and Social Media Analytics
- 3. Name: Artificial Intelligence and Machine Learning
 - 1. **DM61:** Statistics for Data Science
 - 2. **DM62:** Fundamentals of AI & ML
 - 3. **DM63:** Natural Language Processing
 - 4. **DM64:** Artificial Intelligence for Mechanical Engineering
- 4. Name: Sustainability
 - 1. **DM41:** Design Thinking for Sustainability
 - 2. **DM42:** Green Computing
 - 3. **DM43:** Emerging Technologies for Sustainability
 - 4. **DM44:** Sustainable Product Design

List of Modern Indian Language (2 credit) (AEC):

- 25AEC12ME021 Sanskrit for Beginners
- 25AEC12ME022 Telugu for Beginners
- 25AEC12ME023 Kannada for Beginners
- 25AEC12ME024 Tamil for Beginners

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Indicative List of Cocurricular Courses (CC): (Min 15 to Max 20 students in each course: Except Social Activities). Will be offered based on student choice and availability of resources to conduct a course.

. Will be off	ered based on student choice and availability of resou
LLC01.	Culinary Arts: Foundations of Cooking
LLC02.	Indian Aesthetics
LLC03.	Sketching
LLC04.	Personality Development and People Management
LLC05.	Work Life Balance
LLC06.	Art of Living
LLC07.	Yoga Vidya
LLC08.	First Aid and Self Defence
LLC09.	Fire Safety and Electronic Security
LLC010.	Sports Technology
LLC011.	Athletics
LLC012.	Aerobics and Fitness
LLC013.	Study of Dance Forms
LLC014.	Introduction to Dramatics: Exploring Theatre Arts
LLC015.	Fundamentals of Photography
LLC016.	Cinematography
LLC017.	Music Appreciation and Composition
LLC018.	Script writing
LLC019.	Vehicle maintenance and traffic rules
LLC020.	Garden Design and Maintenance
LLC021.	Managing Social Media
LLC022.	Server and Network Maintenance
LLC023.	Electrical Safety
LLC024.	Mentoring of School Children
LLC025.	Social Club Activities
LLC026.	Cultural Club Activities
LLC027.	Fundamentals of Vedic Astrology and Palmistry
LLC028.	Garment Construction
LLC029.	Professional Cosmetology
LLC030.	Practical Nursing

Society of St. Francis Xavier, Pilar's Er. Conceicae Rodrigues College of Engineer

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai-400050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teach (Hi	Credits Assigned					
		L	T	P	L	T	P	Total
BSC11ME05	Partial Differential	2	1	0	2	1	0	3
	Equations and	Examination Scheme						
	Statistical Methods		ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	30	1	00
		Tutorial	20		30		5	50

Pre-requisite Course Codes	At the	end of the course students will be able to
	CO1	Implement numerical and analytical methods for one
Carres Outcomes		dimensional heat and wave equations in solving partial
Course Outcomes		differential equations.
	CO2	Apply probability distributions of Poisson and Normal to
		some of the real-life situations.
	CO3	Apply the concept of sampling distribution in hypothesis
		testing of small samples using sampling theory.
	CO4	Apply the concept of Correlation and Regression to
		engineering problems in data science, machine learning, and
		AI.
	CO5	Operate Laplace Transform on a piecewise continuous
		function and its inverse on a bounded function.

Theory:

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Partial Differential Equations	1,2,3,4	06
	1.1	Introduction of Partial Differential equations, method of separation		04
		of variables, Vibrations of string, Analytical method for one		
		Dimensional heat and wave equations. (only problems)		
	1.2	Crank Nicholson method		01
	1.3	Bender Schmidt method		01
2	Title	Probability Distribution and Sampling Theory-I	1,2,3,4	07
	2.1	Probability Distribution: Poisson and Normal distribution		03
	2.2	Sampling distribution, Test of Hypothesis, Level of Significance,		02
		Critical region, One-tailed, and two-tailed test, Degree of freedom.		
	2.3	Students't-distribution (Small sample). Test the significance of		02
		Single sample mean and two independent sample means and		
		paired t- test)		
3	Title	Sampling Theory-II	1,2,3,4	04
	3.1	Chi-square test: Test of goodness of fit and independence		02
		Of attributes (Contingency table).		
	3.2	Analysis of variance: F-test (significant difference between		02
		Variances of two samples)		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

4	Title	Statistical Techniques	1,2,3,4	04
	4.1	Karl Pearson's Coefficient of correlation(r) and related concepts		02
		with problems.		
	4.2	Lines of regression		02
5	Title	Laplace and Inverse Laplace Transform	1,2,3,4	05
	5.1	Laplace transform of fundamental functions, Properties (without proof): Change of scale, first and second shifting theorem, multiplication and division by t, Laplace transform of derivative and integration.		03
	5.2	Inverse Laplace transform using partial fraction method and convolution method		02
	•		Total l	26

Tutorial:

Exp. No.	Tutorial Details	Hours
1	Partial differential equations 1	01
2	Partial differential equations 2	01
3	Probability distributions	01
4	Testing of hypothesis	01
5	Chi-square test	01
6	F-Test	01
7	Correlation and Regression	01
8	Laplace and inverse Laplace transform	01
	Total Hours	08

Course Assessment:

Theory:

<u>ISE-1:</u> MCQ: 20 Marks ISE-2: MCQ: 20 Marks

MSE: 90 minutes 30 Marks written examination based on Modules 1 and 2 ESE: 90 minutes 30 Marks written examination based on Modules 3, 4 and 5

Tutorial:

- 1. ISE-1 will be conducted for three tutorials evaluated for 20 marks.
- 2. ISE-2 will be conducted for five tutorials evaluated for 30 marks.

Recommended Books:

- [1] Dr B. S. Grewal, "Higher Engineering Mathematics", Khanna Publications, 4nd Edition.
- [2] H. K. Dass, "Advanced Engineering Mathematics", S. Chand, 28th Edition.
- [3] Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition.
- [4] Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publications, 4th Edition.

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned							
		L	T	P	L	T	P	Total	
		2			2		-	2	
25PCC12ME05	Advanced	Examination Scheme							
25FCC12NIE05	Manufacturing		ISE1	MSE	ISE2	ESE	Γ	otal	
	Processes	Theory	20	30	20	30		100	
		TU/PR							

Pre-requisite Course Codes	None	
	CO1	Understand the difference between traditional and additive manufacturing techniques including solid-based, liquid-based, and powder-based techniques.
	CO2	Describe the working principle, material removal mechanism and process parameters for Hybrid machining.
Course Outcomes	СОЗ	Identify and understand the MEMS and Non-MEMS based manufacturing techniques.
	CO4	Understand basic Nano finishing techniques.
	CO5	Describe metal joining processes along with their advantages, disadvantages, and applications.
	CO6	Comprehend the Composite manufacturing and powder metallurgy process along with its advantages, disadvantages, and applications.

Module No.	Topics	Ref	Hrs.
1	Introduction to Additive Manufacturing (AM), Subtractive manufacturing v/s Additive Manufacturing, Powder-based AM processes: Selective laser sintering (SLS), Electron beam melting. Solid-based AM process: Fused deposition modelling (FDM), Laminated object manufacturing (LOM). Liquid based AM Process: Stereo lithography (SLA).	1	04
2	Introduction to Hybrid machining: Electric discharge grinding (EDG), Electro chemical grinding (ECG), Electro stream drilling (ESD), Electro chemical deburring (ECD), Laser assisted machining (LAM) and Shaped tube electrolytic machining (STEM). Working principle, Material removal mechanism, Identification of process parameters, Advantages, Disadvantages and Applications.	3	05
3	Introduction to Micro Manufacturing Techniques: Challenges in Meso, Micro, and Nano manufacturing. NON – MEMS based - Traditional Micromachining (Micro turning, Micro Milling, Micro grinding, Diamond turning).	2	05

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Total		26
6	Polymeric composites manufacturing processes: Thermoset and Thermoplastic composite processing, advantages & disadvantages. Manufacturing process for thermoset composites (applications, basic processing steps, advantages and limitations only) prepeg layup, wet layup, spray up, filament winding, pultrusion and resin transfer molding. Powder Metallurgy: Powder manufacturing methods; Advantages, disadvantages, and applications of powder metallurgy. Case studies like Oil Impregnated Bearings.	5	04
5	Metal Joining Processes: Gas welding, Arc welding, Resistance, Radiation, Solid state and Thermo-chemical welding processes, soldering and brazing processes, welding defects, inspection & testing of welds, Safety in welding.	4	04
4	vapor deposition (CVD); Physical vapor deposition (PVD), optical and electron beam lithography; Dry and wet etching. Introduction to Nano Finishing Techniques: Abrasive Flow Machining (AFM), Magnetic Abrasive Finishing (MAF), Magneto rheological Finishing (MRF), Magneto rheological Abrasive Flow Finishing (MRAFF), Magnetic Float Polishing (MFP), Elastic Emission Machining (EEM), Chemical Mechanical Polishing (CMP).	2	04
	MEMS based - Overview about micro fabrication methods - Chemical		

Course Assessment:

Theory:

Quiz (20 Marks) OR One assignment each on module 1, 2 and 3. Continuous pre-**ISE-1:**

defined rubrics-based evaluation

Quiz (20 Marks) OR One assignment each on module 4, 5 and 6 or presentations **ISE-2:** by students in groups of 3 on recent topics related to metrology and quality

engineering OR Interaction/viva other than presentation

90 minutes of written examination based on 50% syllabus (30 Marks) MSE:

ESE: 90 minutes of written examination based on the rest of the syllabus covered after

MSE (30 marks)

Reference Books:

- 1. Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing, Andreas Gebhardt, Hanser Publishers, 2012.
- 2. Micro and Nanomanufacturing, Mark J. Jackson, Springer, 2007.
- 3. A Text Book of Production Technology Vol. II, O. P. Khanna, Dhanpat Rai Publication (2012).
- 4. Welding Technology, O. P. Khanna, Dhanpat Rai & Co.
- 5. Composites Manufacturing Materials, product, and Process Engineering, Sanjay K. Muzumdar, CRC Press (2002).

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned		
	Engineering Mechanics	L	T	P	L	T	P	Total
		2		2	2		1	3
25PCC12ME06		Examination Scheme						
231 CC121/1200			ISE1	MSE	ISE2	ESE	To	tal
		Theory	20	30	20	30	1	00
		PR	20		30			50

Part A (Theory)

Pre-requisite Course Codes	-	
	CO1	Learners will be able to understand concept of force, moment and apply the same along with the concept of equilibrium in two and three dimensional systems with the help of FBD.
	CO2	Learners will be locate the centroid of two dimensional Lamina
Course Outcomes	CO3	Learners will be able to Correlate real life application to specific type of friction and estimate required force to overcome friction.
	CO4	Learners will able to establish relation between velocity and acceleration of a particle and analyze the motion by plotting the relation
	CO5	Learners will able to establish Kinematic relations for a rigid body
	CO6	Learners will be able to a nalyze particles in motion using force and acceleration, work-energy

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	System of Coplanar Forces:		2
		Classification of force systems, Principle of transmissibility, composition		
		and resolution of forces		
	1.2	Resultant:		3
		Resultant of coplanar and Non Coplanar (Space Force) force system		
		(Concurrent forces, parallel forces and non-concurrent Non-parallel		
		system of forces). Moment of force about a point,		
		Couples, Varignon's Theorem. Force couple system. Distributed Forces in		
		plane.		

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

		Total	30
	6.3	Kinetics of a Particle: Impulse and Momentum: Principle of linear impulse and momentum.Impact and collision: Law of conservation of momentum, Coefficient of Restitution. Direct Central Impact and Oblique Central Impact. Loss of Kinetic Energy in collision of inelastic bodies	3
	6.2	Kinetics of a Particle: Work and Energy: Work Energy principle for a particle in motion. Application of Work – Energy principle to a system consists of connected masses and Springs.	3
6	6.1	Kinetics of a Particle: Force and Acceleration: -Introduction to basic concepts, D'Alemberts Principle, concept of Inertia force, Equations of dynamic equilibrium, Newton's second law of motion. (Analysis limited to simple systems only.)	2
5	5.1	Kinematics of Rigid Body: Translation, Rotation and General Plane motion of Rigid body. The concept of Instantaneous center of rotation (ICR) for the velocity. Location of ICR for 2 link mechanism. Velocity analysis of rigid body using ICR.	3
4	4.1	Kinematics of Particle: Motion of particle with variable acceleration. General curvilinear motion. Tangential& Normal component of acceleration, Motion curves (a-t, v-t, s-t curves). Application of concepts of projectile motion and related numerical.	4
3	3.1	Friction: Revision of Static Friction, Dynamic/ Kinetic Friction, Coefficient of Friction, Angle of Friction, Laws of friction. Concept of Cone of friction. Equilibrium of bodies on inclined plane. Application to problems involving wedges and ladders	3
	2.2	Equilibrium of Beams: Types of beams, simple and compound beams, type of supports and reaction: Determination of reactions at supports for various types of loads on beams. (Excluding problems on internal hinges)	2
2	2.1	Equilibrium of System of Coplanar Forces: Conditions of equilibrium for concurrent forces, parallel forces and nonconcurrent non- parallel general forces and Couples. Equilibrium of rigid bodiesfree body diagrams.	3
	1.3	Centroid: First moment of Area, Centroid of composite plane Laminas	2

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

Theory:

ISE-1:

Team Activity: (Two Hours Duration)

Activity may consists of following:

Debate (For Example Friction is Good or Bad)

Making Model of Some Concepts

Any other suitable activity

Assessment will be done by two teachers in the department who are teaching engineering graphics

ISE-2: Two hours 20 Marks Quiz

on Above Topics

MSE: 30 Marks written examination based on 50% syllabus of 90 Minutes Duration ESE: 30 Marks written examination based on remaining 50% syllabus and of 90 Minutes Duration

Lab:

Part B (Lab)

	Experiments to be completed in Lab	
E1	Verification of Polygon law of coplanar forces	2
E2	Verification of Principle of Moments (Bell crank lever.)	2
E3	Determination of support reactions of a Simply Supported Beam.	2
E4	Determination of coefficient of friction) using inclined plane	2
E5	Collision of elastic bodies (Law of conservation of momentum).	2
E6	Kinetics of particles. (collision of bodies)	2
	Assignments to be completed in Lab	
A1	Resultant of Coplanar force system and Non Coplanar Force System	2
A2	Centroid of Composite plane Laminas	2
A3	Equilibrium of System of Coplanar Forces	2
A4	Kinematics of particles (Variable acceleration + Motion Curves +Projectile motion)	2
A5	Kinetics of particles (D'Alemberts Principle, Work Energy Principle, Impulse momentum Principle, Impact and Collisions.)	2
	Total	22

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:-(Lab)

ISE:

- **1. ISE-1** will be conducted for six activities (E1E2, E3, E4, E5, E6) Continuous pre-defined rubrics-based evaluation for 20 marks.
- **2. ISE-2** will be conducted for four activities (A1, A2, A3, A4, A5) Continuous pre-defined rubrics-based evaluation for 30 marks.

References:

- 1. Engineering Mechanics by R. C.Hibbeler.
- 2. Engineering Mechanics by Beer & Johnston, Tata McGrawHill
- 3. Engineering Mechanics by F. L. Singer, Harper& RawPublication
- 4. Engineering Mechanics by Macklin & Nelson, Tata McGrawHill
- 5. Engineering Mechanics by ShaumSeries
- 6. Engineering Mechanics by A K Tayal, UmeshPublication.
- 7. Engineering Mechanics by Kumar, Tata McGrawHill
- 8. Engineering Mechanics (Statics) by Meriam and Kraige, WileyBools
- 9. Engineering Mechanics (Dynamics) by Meriam and Kraige, WileyBools

Course Code	Course Name Teaching Scheme (Hrs/week) Credits As					Assign	ed	
		L	T	P	L	T	P	Total
	Machine Shop Practice			2			1	1
25PCC12ME07		Examination Scheme						
			ISE1	MSE	ISE2	ESE	To	otal
		Practical	20		30		:	50

Pre-requisite Course Codes		None					
		Learner will be able to					
Comment On the same	CO1	Know the specifications, controls and safety measures related to machines and machining operations					
Course Outcomes	CO2	Use the machines for making various engineering jobs.					
	CO3	Perform various machining operations.					
	CO4	Perform Tool Grinding					

Sr. No.	Experiments Details	Ref	Hrs
1	One composite job consisting minimum two parts employing operations performed of various machine tools.	1	16
2	Tool Grinding – To know basic tool Nomenclature	1	5
	Total		21

Course Assessment:

Laboratory work:

1. ISE-1 (20 marks)

Submission of the one part made on Lathe machine and complete workshop book giving details of drawing of the job and timesheet.

2. ISE-2 (30 marks)

- i. Submission of the second part made on shaper, drilling machine and milling machine and complete workshop book giving details of drawing of the job and timesheet
 - (20 marks)
- ii. Lab interaction: (10 marks)

Recommended Books:

[1] Production Technology Manufacturing Processes volume-II by O. P. Khanna

AICTE Prescribed Textbook:

Workshop Manufacturing Practices by Prof. Veeranna D.K, Khanna Book Publishing (https://ekumbh.aicte-india.org/allbook.php#)

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		ing Schors/week	Credits Assigned					
	Law for Engineers	L	T	P	L	T	P	Total	
		2			2			2	
25OE01		Examination Scheme							
25OE01			ISE1	MSE	ISE2	ESE	To	otal	
		Theory	50		50		1	00	
		Practical							

Pre-requisite Course Codes		rse Codes					
	CO1	To demonstrate awareness of basic structure of Indian Legal System					
	CO2	To demonstrate awareness of principles of contract					
Course Outcomes	CO3	To demonstrate awareness of legal aspects related to establishment of factory and various legislations related to employees, labours, and workmen's welfare					
	CO4	To demonstrate awareness about right of information, intellectual creations					
	from infringement and laws related to energy, food and environment						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Foundation of Legal System	1,2,3	4
	1.1	Indian Legal System: An Introduction, Human Rights,		
		Fundamental Rights, The Supreme Court of India, Statutory Commissions–NHRC, NCW, NCM, NC-SC/ST etc.,		
	1.2	Representation of Peoples Act 1950, Prevention of Corruption		
		Act, 1988, Understanding the Importance of Stamp Duty		
	1.3	Few Illustrated Cases of Supreme Court of India		
2		General Principles of Contract: India Contract Act 1872	2,3	8
	2.1	Contract Law: Agreement and Its Kinds,		
	2.2	Who Can Enter into a Contract, Contract and Its Enforceability,		
		Offer and Acceptance in a Contract,		
	2.3	Essentials of Valid Contract- Lawful Consideration and Lawful		
		Object, Essentials of Valid Contract- Free Consent,		
	2.4	Types of Contract, Contract of Agency, Performance of		
		Contracts, Government Contracts, Standard Form Contracts		
3		Industrial and Labour Laws	2,3	8
	3.1	Labour Laws in India: An Overview, Industrial Disputes Act,		
		1947, Industrial Employment (Standing Orders) Act, 1946		
	3.2	Factories Act, 1948, Industries (Development and Regulation)		
		Act, 1951		
	3.3	Contract Labour (Regulation and Abolition) Act, 1970, Bonded		
		Labour System (Abolition) Act, 1976, Child and Adolescent		
		Labour (Prohibition and Regulation) Act, 1986		
	3.4	Workmens Compensation Act, 1923, Equal Remuneration Act,		
		1976, Payment of Bonus Act, 1965, Payment of Gratuity Act,		
		1972, Employees' State Insurance Act, 1948, Employees'		

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Provident Funds and [Miscellaneous Provisions] Act, 1952,		
		Payment of Wages Act, 1936, Minimum Wages Act, 1948,		
		Employees' Pension Scheme 1995		
	3.5	Apprentices Act, 1961, Maternity Benefit Act, 1961, Fatal		
		Accidents Act, 1855, Trade Unions Act, 1926, Sexual		
		Harassment of Women at Workplace Act, 2013, Collective		
		Bargaining		
4		Right to Information	2,3	2
	4.1	Official Secret Act, 1923, Indian Evidence Act, 1872		
	4.2	Right to Information Act, 2005, Impact of Right to Information		
		Act		
5		Intellectual Property Rights	2,3	2
	5.1	Types of Intellectual Property, Indian Copyright Act 1957,		
		Indian Trademark Act 1999, Indian Patent Act 1970		
6		Other Important Laws	2,3	
	6.1	Electricity Act 2003, Atomic Energy Act 1962, Motors Vehicle		2
		Act 1988, Food Safety and Standards Act 2006, National Food		
		Security Act 2013, Environment Protection Act 1986		
			Total	26

Course Assessment:

ISE-1: Quiz: 20Marks

Activity: Debating Session: 20 Marks Activity: Poster Making: 10 Marks

ISE-2: Quiz: 20 Marks

Activity: Client Counseling: 10 Marks Activity: Animation Making: 20 Marks

Recommended Books:

[1] N. S. Nappinai, "Technology Laws Decoded," LexisNexis, 2017

[2] Vibha Arora and Kunwar Arora, "Law for Engineers" Central Law Publications, 2017

[3] Vandana Bhatt and Pinky Vyas, "Laws for Engineers", ProCare, 2015

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		ing Sch rs/week	Credits Assigned					
	Financial Planning, Taxation and Investment	L	T	P	L	T	P	Total	
		2			2			2	
25OE01		Examination Scheme							
25OE01			ISE1	MSE	ISE2	ESE	To	otal	
		Theory							
		Lab	50		50		1	00	

Pre-requisite Course C	Codes	None
	CO1	To prepare financial plan by understanding owns need
Course Outcomes	CO2	To demonstration awareness of taxation policies and show respect
		towards
		government norms and regulations
	CO3	To prepare investment plan by understanding owns futuristic
		needs

Financial Planning: It is possible to manage income more effectively through financial planning. Managing income helps to understand how much money is required for tax payments, other expenditures and savings. It increases cash flows by carefully monitoring the spending patterns and expenses. Knowledge of comprehensive financial planning will help students to make right financial decisions in their life. It gives guidance in helping choose the right types of investments to fit needs, personality, and goals of their life. In this activity students need to prepare the financial plan for their life.

Taxation Policies: Taxes are levied in almost every country of the world, primarily to raise revenue for government expenditures, although they serve other purposes as well. The simple fact in economics is that there are certain common public goods and public needs that require some form of government and regulation to provide or promote. Taxation is the way to pay for these common goods. In this activity student will learn various types of taxes like Income tax, Corporate tax, Capital gains, Property tax, Inheritance and Sales tax.

Investments: Investments are important because in today's world, just earning money is not enough. But that may not be adequate to lead a comfortable lifestyle or fulfil our dreams and goals. Money lying idle in the bank account is an opportunity lost. Therefore, students should have a knowledge to invest money smartly to get good returns out of it. This activity will give insight to the students about investment in the form of Stocks, Mutual Funds, Fixed Deposits, Recurring Deposit, Public Provident Fund, Employee Provident Fund and National Saving Schemes.

Methodology: Guest lectures or workshops by professionals shall be arranged on Financial Planning, Taxation and Investments. Invite guest speakers, such as tax professionals or financial advisors, shall conduct a tax planning workshop for students. The workshop can cover topics such as tax-efficient investment strategies, retirement planning, and tax-saving opportunities for individuals and businesses. Students should be engaged in assessment driven activities throughout the course. For better learning outcomes following methods of content delivery via student engagement can be adopted.

Investment Simulation Game: Divide students into groups and have them participate in a simulated investment game. Each group is given a virtual budget to invest in stocks, bonds, mutual

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

funds, or other investment vehicles. Throughout the course, they track the performance of their investments and make decisions based on real-world market trends and economic indicators.

Financial Planning Board Game: Design a board game that simulates the process of financial planning, including setting financial goals, creating budgets, managing debt, and making investment decisions. Students play the game in groups, competing or collaborating to achieve their financial objectives.

Stock Market Simulation: Use online stock market simulation platforms that allow students to buy and sell stocks in a virtual trading environment. They can experiment with different investment strategies, track the performance of their portfolios, and compete against their classmates or other teams.

Course Assessment:

ISE-1: Quiz: 20 Marks

Activity: Presentation on Financial Instruments: 10 Marks

Activity: Preparing Investment Portfolio (20 Marks): Assign each student or group of students to create a hypothetical investment portfolio based on specific criteria such as risk tolerance, time horizon, and financial goals. They research different investment options, analyze their potential returns and risks, and justify their portfolio allocations in a written report or presentation.

ISE-2: Quiz: 20 Marks

Activity: Tax Return Case Studies (*Perquisite: Pan Card (if not available, student should immediately apply and get pan card))* (10 Marks): Consider case study of fictional individuals or families and prepare tax returns based on their financial situations. This hands-on activity allows students to apply their knowledge of taxation laws and regulations in a practical context.

Activity: Financial Literacy Podcast (10 Marks): Have students create their own podcasts or audio recordings discussing key concepts related to financial planning, taxation, and investments. They can *interview experts*, share personal finance tips, or discuss current events and trends in the financial industry.

Activity: Personal Finance Blog (10 Marks): Students create their own personal finance blogs or websites where they share articles, tutorials, and resources related to financial planning, taxation, and investments. This activity helps them develop their writing and research skills while sharing valuable information with their peers

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teach (H	Credits Assigned						
	Sanskrit for Beginners	L	T	P	L	T	P	Total	
		2			2			2	
25 A E.C.12ME021		Examination Scheme							
25AEC12ME021			ISE1	MSE	ISE2	ESE	To	tal	
		Theory	50		50		1	00	
		Practical					,		

Pre-requisite Course Codes		rse Codes	AEC11ME01					
Comme	Communication CO1 Demonstrate understanding of the Fundamentals of Sansrkit Language							
Course	CO2	Apply Voc	pply Vocabulary and grammar skills for day to day conversation					
Outcomes	CO3	Developing	g Speaking and Learning skills					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction: Some Unique characteristics of Sanskrit	1-8	6
		The Sounds of Sanskrit: Its Alphabet		
		Sentence Construction and Its underlying logic		
		Introduction of Self and Others		
		Basic verbs and some conjugations		
2	2.1	Introduction to Genitive (6 th Case)	1-8	
		Counting and Reading the Time		
		Plural of Pronouns and Nouns		6
		Conjugation of Basic Verbs in the Plural		
		Introduction to the Locative (7 th Case)		
3	3.1	Days of the week, Months, Future Tense	1-8	6
		Past Tense and More Verbs		
		Introduction to the Accusative (2 nd Case)		
		Introduction to the Instrumental (3 rd Case)		
4	4.1	Introduction to the Ablative (5 th Case)	1-8	6
		Introduction to the Dative (4 th Case)		
		Introduction to the Vocative (8 th Case)		
	4.2	Stories and Motivational Shlok with word by word meaning	1-8	2
		Total		26

Course Assessment:

ISE-1: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

ISE-2: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

- [1] Kumari, S. "Sanskrita Chitrapadakoshah," Mysuru: Bharatiya Bhasha Sansthanam, 1993
- [2] Samkrita-vyavahaara-sahasri (Samskrit-English), New Delhi: Sanskrita Bharati
- [3] Sampad, & Vijay, "The Wonder that is Sanskrit" Pondicherry: Sri Aurobindo Society, 2005.
- [4] Satvlekar, S. D. "Sanskrit Swayam Shikshak," Delhi: Rajpal & Sons, 2013
- [5] Shastri, V K. "Teach Yourself Samskrit: Prathama Diksha" Delhi: Rashtryia Sanskrita Samsthana, 2012
- [6] Vishwasa "Abhyāsa-pustakam", New Delhi: Samskrita Bharati, 2014
- [7] https://onlinecourses.nptel.ac.in/
- [8] https://www.learnsanskrit.org/

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed	
		L	T	P	L	T	P	Total
		2			2			2
25 A E C 12 M E 0 2 2	Tamil for Beginners	Examination Scheme						
25AEC12ME022			ISE1	MSE	ISE2	ESE	To	otal
		Theory	50		50		1	00
		Practical						

Pre-requisi	te Cou	rse Codes	AEC11ME01
C	CO1	Demonstra	te understanding of the Fundamentals of Tamil Language
Course	CO2	Apply Voc	abulary and grammar skills for day to day conversation
Outcomes	CO3	Developing	g Speaking and Learning skills

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1.1	Introduction to Tamil Alphabets and Pronunciation History of Tamil language		1
	1.2	Learning Tamil Alphabets		1
	1.3	Basic Pronunciation and Oral drills with visual learning		2
	1.4	Greetings and common expressions		2
2	2.1	Basic Grammar and Sentence Structure		
		Sentence Construction : Subject, Verb, Object (SVO)		2
	2.2	Present tense,Past tense and Future tense		2
	2.3	Common Nouns, Pronouns with negative imperatives		2
3	3.1	Building Vocabulary for Everyday Conversation Learning Numerals (Cardinal numbers) 1-20, 100. 2001000		2
	3.2	Forming Simple sentences with interactive lessons		3
	3.3	Learning Days of week, Months of the year, Fruit, Food grains, Parts of the Body, Names of Common places like Hospitals, Market place, shops, Saloonsetc.		3
4	4.1	Daily life and Survival Phrases Day to day usage of language for daily routines in conversation with Student to Teacher, Vegetable shop vendor, Railway Station, conversation with Auto Drivers, Hospitalsetc.		3
	4.2	Role Play exercises in common situations Total		3 26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

ISE-1: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

ISE-2: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

Recommended Books:

[1] Kesav.,"A practical course to learn tamil for Absolute beginners (Standard and Colloquial), Notion Press, 2020

- [2] Dr.R.Kalidasan, Dr.S.Velayuthan, "English Grammar-An easy way to learn with Tamil Explanation and key, Shanlax publisher, 2019
- [3] Oxford English-English Tamil Dictionary, Oxford.

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed	
		L	T	P	L	T	P	Total
	Kannada for Beginners	2			2			2
25 A E.C.12ME022		Examination Scheme						
25AEC12ME023			ISE1	MSE	ISE2	ESE	To	tal
		Theory	50		50		1	00
		Practical					,	

Pre-requi	isita Ca	ourse Codes AEC11ME01		
11c-requi	CO		age	
Course	CO	<u> </u>	uge	
Outcomes	s CO			
37 11			D 6	***
Module	Unit	Topics	Ref	Hrs
No.	No.		•	•
1	1.1	Introduction to Kannada Alphabets and Pronunciation		1
	1.2	History of Kannada Language		1
	1.2	Learning Kannada Alphabets		1
	1.2	D '.' 1 ' 11 '		2
	1.3	Pronunciation and visual learning		2
	1.4	Greetings and Common expressions		2
2	2.1	Basic Grammar and Sentence Structure with Subject, Verb,		2
<u> </u>	2.1	Objective (SVO)		
		Objective (SVO)		
		Basics of Sentence Formation		
	2.2	Present tense, Past tense, Future tense, and Introduction to		2
	2.2	Adjectives		
		114,0001100		
	2.3	Common Nouns, Pronouns with negative imperatives		2
3	3.1	Conversation Phrases and Language Vocabulary		2
		Learning Numerals (Cardinal Numbers) 1-20 / 100 -1000		
	3.2	Classified Sentences and Useful expressions		3
		Learning Days of week, Months of the year, Fruits, Food grains, Parts		
	3.3	of the body, Names of common places like Hospitals, markets, shops,		3
		saloons, gender, weather, etc.		
4	4.1	Developing Language fluency and Proficiency.		3
		Day to day usage of Language for daily routine in conversation with		
		Student to Teacher, vegetable vendor, in Railway station, with Auto		
		driver, in Hospitals, etc.		
	4.2	Role play exercises in common situations		3
		Total		26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

ISE-1: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

ISE-2: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

Recommended Books:

[1] Upadhaya, U.P & N.K. Krishnamurthy, "Conversational Kannada" Prism Books, 2018

- [2] Thomas Hodson, "Grammar of the Kannada or Canarese language", Gyan publishing house, 2020
- [3] Ramanja Reddy Merugu, "Learn kannada through English" 2021
- [4] Dr. Prabhu sankara & B.V.Sridhar," Oxford English-English-Kannada dictionary", Oxford Publications.

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			(Credits Assigned				
		L	T	P	L	T	P	Total		
		2			2			2		
25 4 E C123 4 E 02 4	Telugu for Beginners	Examination Scheme								
25AEC12ME024			ISE1	MSE	ISE2	ESE	To	otal		
		Theory	50		50		1	00		
		Practical								

Pre-requisi	te Cou	rse Codes	AEC11ME01
Carres	CO1	Demonstrat	te understanding of the fundamentals of Telugu Language
Course	bulary and grammar skills for day to day conversation		
Outcomes	CO3	Developing	Speaking and Listening skills

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Telugu Alphabets and Pronunciation		1
		History of Telugu language		
	1.2	Learning Telugu Alphabets and Symbols		1
	1.3	Basic Pronunciation		2
	1.4	Greetings and Common expressions		2
2	2.1	Basic Grammar and Sentence Structure		
				2
		Sentence Structure : Subject , verb, Object (SVO)		
	2.2	Present tense, Past tense and Future tense		2
	2.3	Common nouns, Pronouns, Adjectives		2
3	3.1	Conversation Phrases for Daily Situations		
		Learning numerals (Cardinal Numbers) 1- 20, 100 -1000		2
	3.2	Forming Simple sentences / Listening and Speaking skills		3
	3.3	Days of week, Months of the year, Gender, Fruits, Parts of the body,		
		Names of common places like hospitals, markets, shops, saloons etc.		3
4	4.1	Common Phrases and Developing Language Fluency and Proficiency		3
		Day to day usage of Telugu language for daily routines in		
		conversation with Student to teacher, Vegetable Shop vendor,		
		Railway passengers, Auto drivers, in Hospitals., etc		
	4.2	Role Play Exercises in Common situations, presentation on Telugu culture, Telugu scripts, Telugu classical music, Telugu festivals.		3
		Total	•	26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

ISE-1: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

ISE-2: Activities and Assignments: 20 Marks

Oral Examination: 30 Marks

Recommended Books:

[1] Sanjay,D, "Spoken Telugu for Absolute Beginners", Notion Press, 2019.

- [2] Praveen Ragi, "Learn Telugu Through English .V1" Evincepub Publications, 2020
- [3] Oxford compact English-English Telugu Dictionary
- [4] English- Telugu Conversation guide / Aarthi Janyavula, 2018

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teachin	g Scheme	e (Hrs/week)	Cro	edits As	dits Assigned			
		L	T	P	L	T	P	Total		
		1		2	1		1	2		
	Human Values and		Examination Scheme							
25VEC12ME01	Professional Ethics		ISE-I	MSE	ISE-II	ESE	2	Total		
	[HVPE]	Theory	50		50			100		
		Practical								

Pre-requisit	te Cour	rse Codes				
	CO1	Adhere to the core rights and shape one's values.				
Course	CO2	O2 Display the role and responsibility of Engineering professionals				
Outcomes	CO3	Holds moral and Ethical solutions to problems through case studies.				
	CO4	Apply the knowledge of human values to contemporary ethical and global issues.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Background and Approach: Fundamental Rights and Duties		
	1.1	Fundamental Rights and Duties, Right to Compensation for being		2
		Illegally Deprived of one's Right to Life or Liberty, Right to Travel		
		Abroad and Return to one's Country		
	1.2	Promotion of Inter-Religious harmony and inter-faith values,		1
		Composite Culture		
2		Professional Ethics and Human Values		
	2.1	Sense of Engineering Ethics - Variety of moral issues- Types of		3
		inquiry- Moral dilemmas – Moral Autonomy		
		Moral dilemmas, Moral Autonomy, Kohlberg's theory		
		Gilligan's theory, Consensus and Controversy, Profession&		
		Professionalism, Models of professional roles, Theories about right		
		action Codes of Ethics, Plagiarism		
	2.2	Human Values. Morals, values, and Ethics – Integrity- Academic		2
		integrity- Work Ethics- Service Learning- Civic Virtue Respect for		
		others- Living peacefully- Caring and Sharing- Honestly-		
		Cooperation Commitment Empathy-Self Confidence -Social		
		Expectations.		
	2.3	Managing conflict- Respect for authority- Collective bargaining-		2
		Confidentiality, Role of confidentiality in moral integrity-Conflicts of		
		interest		
3		Global Ethical Concerns		
	3.1	Multinational Corporations- Environmental Ethics- Business Ethics-		2
		Computer Ethics		
	3.2	Engineers as Expert witnesses and advisors-Moral leadership- case studies		1
		Total		13

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

ISE-1: AICTE & UNESCO's certificate course on <u>Self-directed Emotional Learning for</u> Empathy and Kindness (SEEK) **30 marks**

Link: https://www.framerspace.com/course/seek (Select SEEK self-directed cohort under the category of youth courses)

Activity: Quiz and assignments 20 Marks

ISE-2: AICTE & UNESCO'S certificate course on <u>Social Emotional Learning for Youth</u> Waging Peace (SEL4YWP)- UNESCO **30 Marks**

Link: https://www.framerspace.com/course/ywp?cid=5eaff2c239109c2c12ef8bd3

**Participants need to register themselves in the link https://docs.google.com/spreadsheets/d/1dECtZbAmcPhKKelSEimVv-hzPV7dA_g-Brty2rxC2vE/edit?usp=sharing, before accessing the course content.

Activity: Article Discussion, Quiz and Assignments 20 Marks

Recommended Books:

- [1] Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014
- [2] Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- [3] Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics-Concepts and cases, Wadsworth Thompson Learning, United States, 2005.
- [4] M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi, 2012.
- [5] R S Naagarazan, A textbook on professional ethics and human values, New Age International (P) limited, New Delhi, 2006.
- [6] http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total		
				4			2	2		
25CED12ME01	Community	Examination Scheme								
25CEP12ME01	Engagement Project		ISE1	MSE	ISE2	ESE	To	otal		
		Theory								
		Practical	50		50		1	00		

Pre-requisi	te Cou	rse Codes				
Course Outcomes	CO1	Identify and address community needs and challenges which help learners to develop problem-solving skills and creativity in finding innovative solutions.				
	CO2	Enhance their cultural competence and ability to work effectively in multicultural settings				
	CO3	Critically think on complex issues considering multiple view points				
	CO4	Demonstrate collaboration, team work, civic engagement, empathy and compassion while engaging directly with community				
	CO5	Develop a lifelong commitment to social justice and making a positive				
		impact in the world				

This course requires students to participate in field-based learning/projects generally under the supervision of faculty. The curricular component of 'community engagement and service' involve activities that would expose students to the socio-economic issues in society so that the theoretical learnings can be supplemented by actual life experiences to generate solutions to real-life problems.

At the end of the course it is expected that students will have valuable learnings in terms of enhanced communication skills, increased cultural competence, improved critical thinking, leadership skills, collaboration skills, empathy & compassion, civic engagement, problem-solving skills, self-reflection & personal growth and long-term commitment to social justice.

It is expected that 26-30 hours of contact time per credit in a semester (52 to 60 hours in a semester for 2 credits) along with 13-15 hours of activities such as preparation for community engagement and service, preparation of reports, etc., and independent reading and study.

Other Guidelines to students for successful Community Engagement:

Community engagement is the process of working collaboratively with and through groups of people affiliated by geographic proximity, special interest, or similar situations to address issues affecting the well-being of those people It is a powerful vehicle for bringing about environmental and behavioral changes that will improve the health of the community and its members. It often involves partnerships and coalitions that help mobilize resources and influence systems, change relationships among partners, and serve as catalysts for changing policies, programs, and practices.

Community engagement project is different as compared to traditional consultation. It is a regular engagement of community for achieving an identified goal or vision. It recognizes the role of community engagement in its broadest sense in the development of local democracy, while noting that the focus of the report is on the practice of community engagement as it relates to local authority activity.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Communication, diplomacy, patience, and flexibility are essential to engage with a community. For a successful engagement conditions include: Shared and defined purpose. Willingness to collaborate. Commitment to contributing. Participation of the right people. Open and credible process. Involvement of a champion with credibility and clout. Ensure that the engagement process is complex but manageable. Initially the team will: Discuss and define the initiative and its potential impact. Set the purpose and goals for community engagement. Define the community. Know and respect the community's characteristics. Develop a relationship with the community, build trust, work with formal and informal leadership, find the community gatekeeper, identify the project champion, meet with the local organizations, and learn the assets and challenges for that community. Find the common interests.

The following four phases provide broad outline for the community engagement process: Phase-I: Outreach

Go to the community instead of having the community come to you. Invite the stakeholders to a conversation. Create a constructive environment for dialogue allowing time to get to know the participants remembering that the community's time is valuable and must be respected. Identify the person or the organization that has convened the group and will provide initial leadership and organizational management. Outline the purpose and process for the conversation. Use a facilitator when appropriate. Define the issue and why it is important. Outline what is broken and focus on what is working. Is the issue a people problem or a situation problem? Can the problem be solved with technical expertise or will it require something else? Determine the interest and merit in hosting future discussions.

Phase-II: Gather Facts, Brainstorm and Select

Create an environment for discussion where people are comfortable asking questions, expressing doubts, and brainstorming new ideas. Gather the facts related to the issue and its impact. Use a SWOT, appreciative inquire, asset mapping, and other tools during the factfinding stage. Clarify the issue's alignment with the community's values and ethics. Establish the common ground on which conversations will be based. Brainstorm and gather alternative solutions. Ask the "what if" questions. Spend time discussing the options and the potential impact. Allow the process to equip the participants to see the change, feel the change, and then be prepared to change. Select the best practice/solution. If required use decision-making tools to reduce the number of options.

Phase-III: Plan and Review

Write the implementation action plan. Include the evaluation procedure that will answer the question "What will it look like when the change has happened?". Discuss the proposal with the appropriate stakeholders searching for insight and response. Use the feedback to assess and revise the plan. Stay focused on the solution.

Phase-IV: Implement and Evaluate

Implement the plan. Remember, groups want a rapid success. Identify an action that will provide a "meaningful win" within the "immediate reach." Evaluate the impact. Report the status to the community and gather feedback. Revise the plan and evaluate again.

Keep the participants informed through discussion agendas, written summaries of previous discussions, goals/assignments for the next discussion, and progress reports providing accountability for delivering what was promised.

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Assessment:

<u>ISE-1:</u>

Activity: Report Submission: 20 Marks Activity: Report Presentation: 30 Marks

<u>ISE-2:</u>

Activity: Report Submission: 20 Marks Activity: Report Presentation: 30 Marks

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	T	P	L	T	P	Total	
		2			2			2	
	Introduction to	Examination Scheme							
25DM01/25RM01	Emerging		ISE1	MSE	ISE2	ESE	Total		
	Technologies								
		Theory	50		50			100	
		Practical							

Pre-requisit	te Cou	rse Codes				
After the successful completion students should be able to:						
	CO1	Recognize the dynamic nature of emerging technologies and their evolving landscape.				
	CO2	Demonstrate knowledge of the key characteristics and potential applications of emerging technologies.				
Course	CO3	Identify the value, innovative solutions or applications for real-world challenges using emerging technologies				
Outcomes	CO4	Analyze the implications of emerging technologies on society, business, and various industries				
	CO5	Identify various emerging technologies relevant to his/her discipline for personal and professional growth				
	CO6	Recognize the need for continuous learning to keep pace with technological advancements.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Industrial Revolution, Important Inventions during various Industrial Revolutions (IR).	1,2	2
	1.2	Role of data, Enabling devices, Network and Human to Machine Interaction during IR	1,2	1
2	2.1	Data Science: Overview of data science, Data Science Life Cycle, Cloud Computing with examples of available Clouds, Big Data, Big data Life Cycle with Hadoop	1,2	3
	2.2	Artificial Intelligence and Machine Learning: Philosophy of AI, Components of AI, Important terminologies, AI Problem Solving, Real-World AI, Types of Machine Learning, Neural Networks, Applications: Computer Vision, Robotics, NLP. Societal Implications of AI.	1,2	3
	2.3	Fundamentals of Blockchain, Blockchain applications and architecture. Introduction to Cyber Security, Cyber attacks and defenses, Case studies.	1,2	3
	2.4	Robotic Process Automation, RPA Tools and Applications		1
3	3.1	Internet of Things (IoT): Introduction, IoT Sensors, IoT Data acquisition & platforms, IoT Data Communication, IoT data storage and Retrieval, IoT data analytics & visualization and IoT Security, IoT Product Development Life Cycle, Industrial IoT,	1,2	3

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Concept of Edge Computing. Case studies							
	3.2	Introduction to Immersive Technologies (AR, VR and MR), AR	3	2					
		/VR systems with IOT, AI and Haptics, Tools needed to build AR	R systems with IOT, AI and Haptics, Tools needed to build AR						
		Apps, usecases, Human Centric UX design							
4	4.1	Semiconductor and Nanotechnology: Evolution of	4	3					
		Semiconductor Industry, Trends and Innovations in							
		Semiconductor Technologies with respect to material, devices,							
		circuits, architecture and applications. Indian Semiconductor							
		Industry: present status, market trends, challenges, policy							
		initiatives by GoI							
	4.2	Digital Manufacturing, Principles of 3D Printing, Classification	1,6	3					
		and material used in 3D printing, software tools and applications							
		to various fields.							
		Introduction to Robotics, Drones and Autonomous Systems.							
		Fundamentals of tools, software and hardware required to build							
		robot and autonomous systems. Applications and Case studies.							
	4.3	Other Trends in emerging technologies: 5G telecom networks and	6	2					
		Electric Vehicles							
	•	Total		26					

Course Assessment:

Theory:

ISE-1: 50 Marks

Rubric based assessment for activities conducted.

ISE-2: 50 Marks

Rubric based assessment for activities conducted.

Recommended Books:

- [1] Vasudha Tiwari. Sunil Kumar Chaudhary and Iqbal Ahmed Khan, "*Emerging Technology For Engineers*", Vayu Education of India, 1st Edition.
- [2] Chanagala Shankar, "Emerging Technologies", Bluerose Publishers Pvt. Ltd, 1st Edition
- [3] Chandradev Yadav, "The Evolution of Immersive Technologies: A Journey into the Extraordinary", 1st Edition
- [4] Website of India Semiconductor Mission (https://ism.gov.in/)
- [5] SWAYAM course on 'An Introduction to Artificial Intelligence'
- [6] Other relevant online resources to be used.

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

Course Code	Course Name	Teaching Scheme (Hrs/week)		2	Credits Assigned			
		L	T	P	L	Т	P	Total
		2	1		2	1		3
25BSC12ME06	Thermodynamics	Examination Scheme						
23DSC12ME00			ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	30		100
		Tutorial	20		30			50

Pre-requisite Course	equisite Course None					
Codes						
	CO1 Understand fundaments of thermodynamic of temperature measurement	s and concept				
	CO2 Understand basic laws of thermodynamics significance.	and their				
Course Outcomes	CO3 Understand applications of First and Secon significance of disorder in a system.	d Laws and				
Course Outcomes	CO4 Understand use of above concepts in estimavailability and unavailability.	ating				
	CO5 Understand steam properties and use of ste Mollier Chart	am tables and				
	CO6 Understand basic thermodynamic cycles us thermodynamic systems.	sed in different				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Basic Concepts: Thermodynamics system and types,	1-5	2
		Macroscopic and Microscopic approach, Thermodynamic		
		properties of the system, state, path, process and cycle, Point		
		and Path functions, Quasi-static process & Equilibrium.		
	1.2	Zeroth law of thermodynamics, Characteristic gas equation,	1-5	1
		Concept of Internal energy, Enthalpy, Heat and Work. Concept		
		of PdV work. (No numericals)		
2	2.1	First Law of Thermodynamics:	1-5	1
		Statement & Equation, First law for Cyclic process (Joule's		
		experiment), Perpetual Motion Machine of the First Kind.		
	2.2	Application of first law to nonflow systems executing non-flow	1-5	2
		processes. (No numericals)		
	2.3	First law applied to flow systems: Concept of flow process and	1-5	2
		flow energy, Concept of the steady flow process, Energy		
		balance in a steady flow. Application of steady flow energy		
		equation to different devices. Steady flow work, Relation		
		between flow and non-flow work (No numericals)		
3	3.1	Second Law of Thermodynamics:	1-5	3

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Limitation of the first law of thermodynamics, Thermal			
		reservoir, Concept of heat engine, Heat pump and Refrigerator,			
		Statement of the second law of thermodynamics. Causes of			
		irreversibility, Perpetual Motion Machine of the second kind,			
		(No numericals)			
	3.2	Entropy:	1-5	2	
		Clausius theorem, Entropy a property of the system,			
		Temperature-Entropy diagram, Clausius inequality, Increase of			
		entropy principle, T- ds relations, Entropy change During a			
		process. (No numericals)			
4	4.1	Availability:	1-6	3	
		High -grade and low- grade energy, Available and Unavailable			
		energy, Dead State, Useful work, Irreversibility, Availability of			
		closed system& steady flow process, Helmholtz & Gibbs			
		function (No numericals)			
5	5	Properties of Pure Substance:	1-6	5	
		Advantages and applications of steam, Phase change process of			
		water, Saturation pressure and temperature, Terminology			
		associated with steam, Different types of steam. Critical and			
		triple point, T-s and an h-s diagram for water, Calculation of			
		various properties of wet, dry and superheated steam using the			
		steam table and Mollier chart. (No numericals)			
6	6.1	Vapour Power cycle:	1-6	3	
		Principal components of a simple steam power plant, Carnot			
		cycle and its limitations as a vapour cycle, Rankine cycle with			
		different turbine inlet conditions, Mean temperature of heat			
		addition, Reheat Rankine Cycle (No numericals)			
	6.2	Gas Power cycles:	1-6	2	
		Nomenclature of a reciprocating engine, Mean effective			
		pressure, Assumptions of air Standard Cycle, Otto cycle, Diesel			
		Cycle and Dual cycle, Comparison of Otto and Diesel cycle for			
		same compression Ratio. (Only theory. No proofs, No			
		numericals)		26	
Total					

Course Assessment:

Theory:

<u>ISE-1:</u> Activity: Assignments, Quiz (20 marks) <u>ISE-2:</u> Activity: Assignments, Quiz (20 marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial:

ISE:

1. **ISE-1**

Examples on Module 1, Module 2 and Module 3 Continuous pre-defined rubrics-based evaluation for 20 marks.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

2. ISE-2

Examples on Module 4, Module 5 and Module 6 Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:

Text Books:

- [1] Thermodynamics by P K Nag, 6th Edition, TMH
- [2] Thermodynamics by Onkar Singh, 4th Edition New AgeInternational
- [3] Thermal Engineering By Ajoy Kumar, G. N. Sah, 2nd Edition, Narosa Publishing house

Reference Books:

- [4] Fundamentals of Classical Thermodynamics by Van Wylen G.H. & Sonntag R.E., 9_{th} Edition John Wiley& Sons
- [5] Thermodynamics by W.C. Reynolds, McGraw-Hill &Co
- [6] Thermodynamics by J P Holman, 4th Edition McGraw-Hill & Co

AICTE Prescribed Textbook:

Basics of Thermodynamics by Dr. Pramod Kumar, Atul Dhar

(https://ekumbh.aicte-india.org/allbook.php#)

Course Code	Course Name	Teachi (Hı		Credits Assigned				
		L	T	P	L	T	P	Total
25PCC12ME08	Mechanics of Solids	2	1		2	1		3
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	T	otal
		Theory	20	30	20	30	1	100
		Tutorial	20		30			50

Pre-requisite Course	Engineering Mechanics					
Codes						
	CO1	Demonstrate fundamental knowledge about various types of loading and stresses induced.				
	CO2	Draw the SFD and BMD for different types of loads and support conditions.				
Course Outcomes	CO3	Analyse the bending and shear stresses induced in beam.				
	CO4	Analyse the deflection in beams and stresses in shaft.				
	CO5	Analyse the stresses and deflection in beams and				
		estimate the strain energy in mechanical elements.				
	CO6	Analyse buckling phenomenon in columns.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction-Concept of Stress and strain	1-6	4
		Deformation in solids- Hooke's law, stress and strain under		
		tensile, compressive and shear forces, longitudinal and		
		lateral strain, Poisson's ratio, stress-strain diagram for		
		ductile and brittle materials, Elastic constants, Young's		
		modulus of elasticity, modulus of rigidity and bulk modulus		
		and their relations- volumetric, linear and shear strains, Two-		
		dimensional stress system, Principal Stresses and Strains		
	1.2	Thermal stress and strain in single and compound bars	1-6	1
2	2.1	Shear Force and Bending Moment in Beams:	1-6	2
		Introduction to types of beams, supports and loadings.		
		Definition of bending moment and shear force, Sign		
		conventions,		
		Relationship between load intensity, bending moment and		
		shear force.		
	2.2	Shear force diagrams for statically determinate beams	1-6	2
		subjected to point loads, uniformly distributed loads,		
		uniformly varying loads, couple and their combinations.		
		Calculation of maximum S.F under different loads		
	2.3	Bending moment diagrams for statically determinate beams	1-6	2
		subjected to point loads, uniformly distributed loads,		
		uniformly varying loads, couple and their combinations,		

		Calculation of maximum B.M. and the point of contra flexure under different loads		
3	2.1	Stresses in Beams:	1-6	1
3	3.1	10 10 00 00 00 00 00 00 00 00 00 00 00	1-0	1
		Theory of bending of beams, Assumptions in the simple		
		bending theory, derivation of formula and its application to		
		beams of rectangular, circular channel, I and T- sections.		
		Combined direct and bending stresses in afore-mentioned		
		sections		
	3.2	bending stress distribution for point and distributed loads in	1-6	2
		simply supported beams and cantilevers for common		
		symmetrical sections.		
	3.3	shear stress distribution for point and distributed loads in	1-6	2
		simply supported beams and cantilevers for common		
		symmetrical sections.		
4	4.1	Deflection of Beams:	1-6	1
		Introduction to deflection of a beam, Relationship between		
		moment, slope and deflection, Double integration method		
		(no numericals)		
		Maxwell's reciprocal theorem		
	4.2	Macaulay's method for computation of deflection and slope	1-6	3
	4.3	Torsion:	1-6	2
		Introduction to Twisting moment or Torque, Theory of		
		Torsion, strength of shaft, Torsional stiffness, flexibility and		
		rigidity, Stresses in solid and hollow circular shafts.		
5	5.1	Strain Energy:	1-6	2
		Strain energy stored in the member due to gradual, sudden		
		and impact loads, Strain energy due to bending and torsion.		
	5.2	Columns:	1-6	2
		Introduction, failure of columns, Buckling load, Types of		
		end conditions for column, Euler's formula and its		
		limitations, Rankine-Gordon's formula, Johnson's empirical		
		formula		
		Total		26

Tutorial:

Sr. No.	Tutorial Details	Hours
1	Stress and Strain	01
2	Shear Force and Bending Moment in Beams	01
3	Torsion	01
4	Stresses in Beams	01
5	Deflection and slope of Beams	01
6	Strain Energy	01
7	Columns	01
8	Case examples Presentation	01
	Total Hours	08

Course Assessment:

Theory:

ISE-1:

Activity: Quizzes on first two modules (20 Marks)

ISE-2:

Activity: Quizzes on last three modules (20 Marks)

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial:

1. ISE-1

First three tutorials (20 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

i. Next four tutorials (20 marks)

Continuous pre-defined rubrics-based evaluation for 20 marks

ii. Presentations (10 Marks)

Students in a group of three to four should study and present the applications of mechanics of solid in real life case examples related to any of the following topics: deformation of solids, simple stress and strain, thermal stress and strain, principal stresses, shear force and bending moment diagrams, deflection and slope, torsion, columns, cylinders, Software analysis etc.

Recommended Books:

Text Books:

- [1] Mechanics of Materials by S. S. Ratan, Tata McGraw Hill Pvt. Ltd
- [2] Strength of Materials by R. K. Rajput, S Chand Publications
- [3] A textbook of Strength of Materials by R. K. Bansal, Laxmi Publications
- [4] Strength of Materials by S. Ramamrutham, Dhanpat Rai Pvt. Ltd
- [5] Strength of Materials by R. Subramanian, Oxford University Press, Third Edition 2016
- [6] Mechanics of Structures by S. B. Junnarkar, Charotar Publication

Reference Books:

- [7] Strength of Materials by Ryder, Macmillan
- [8] Mechanics of Materials by James M. Gere and Barry J. Goodno, Cengage Learning, 6thEd, 2009
- [9] Mechanics of Materials by Gere and Timoshenko, CBS 2nd Edition
- [10] Elements of Strength of Materials by Timoshenko and Youngs, Affiliated East -West Press
- [11] Mechanics of Materials by Beer, Jhonston, DEwolf and Mazurek, TMHPvt Ltd., New Delhi
- [12] Introduction to Solid Mechanics by Shames, PHI
- [13] Strength of Materials by W. Nash, Schaum's Outline Series, McGraw Hill Publication, Indian Edition

AICTE Prescribed Textbook:

Strength of Materials by Dr. Uday Shanker Dixit, Nelson Muthu, S. M. Kamal (https://ekumbh.aicte-india.org/allbook.php#)

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned			
	Materials Science and Engineering	L	T	P	L	T	P	Total	
		2	1		2	1		3	
25PCC12ME09		Examination Scheme							
231 CC12WIE03			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	30		100	
		Tutorial	20		30			50	

Pre-requisite Course Codes	-	
	CO1	Identify and fundamentally differentiate between various
		classes of materials.
	CO2	
		deformation, and strengthening mechanisms in solids.
	CO3	Categorize various modes of failure.
Course Outcomes	CO4	Predict the phases by analyzing various types of phase
		diagrams.
	CO5	Propose appropriate heat treatment for various metals and
		alloys studied for a particular application.
	CO6	Able to understand the properties and behavior of different
		new-age materials.

Part A (Theory)

Module No.	Unit No.	Topics	Ref	Hrs.
1	1.1	Introduction to Materials Science and Engineering, Why study MSE. Processing/Structure/Properties/Performance correlations. Materials classification. Types of atomic bonding.	1,2	03
1	1.2	1,2	03	
	2.1	Imperfection in solids – point defects, line defects, Surface defects, and volume defects.		
2	2.2	Elastic and plastic deformation. Stress-Strain behavior. Mechanisms of deformation. Slip systems. Critical resolved shear stress. Deformation in Single and Polycrystalline materials.	1,2	05
	2.3	Strengthening mechanism in metals. Recovery, Recrystallization, and Grain Growth.		
3	3.1	Fracture: Definition and types of fractures. Ductile fracture and Brittle fracture. Fracture mechanics. Fracture toughness. Ductile-to-Brittle transition.	1,2	04
3	3.2	Fatigue Failure: Definition of fatigue. Cyclic stress. Mechanism of fatigue. Fatigue testing. S. N. Curve. Factors that affect fatigue life.	1,2	04

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		Creep: Definition and significance of creep. Effect of temperature				
	3.3	and creep on the mechanical behavior of materials. Creep testing.				
		Mechanism and types of creep.				
4	4.1	Solidification of metals. Crystalline and noncrystalline materials.				
	4.1	Anisotropy. Theory of alloying.				
	4.2	Phase diagrams – definition, basic concepts, and types.				
	7.2	Development of microstructure.	1,2	05		
_ ~		The Iron-Iron Carbide Phase Diagram: Importance and allotropic	1,2	03		
	4.3	forms of Iron. Iron-Iron carbide diagram and its analysis.				
	1.5	Classification of Plain carbon steels and Cast irons. Types of				
		metal alloys – Ferrous and nonferrous (Basics)				
		Principles of Heat treatment: Technology of heat treatment.				
	5.1	Classification of the heat treatment process. Time-Temperature-		05		
	0.12	Transformation diagram. Continuous Cooling Transformation				
		Diagram. Superimposition of cooling curves on the TTT diagram.	1,2			
_	5.2	Heat treatment Process and applications: Annealing,				
5		Normalizing, Spheroidzing, Hardening, Tempering,				
		Austempering, Martempering, Maraging and Ausforming				
		process.				
	5.3	Surface Hardening methods. Their significance and applications.				
	5.3	Carburizing, Nitriding, Cyaniding, Carbon-nitriding. Induction				
		hardening and Flame hardening processes. Ceramic Material: Structures, imperfections, and mechanical				
	6.1	properties.				
6		Nanomaterials: Introduction, classification, fabrication methods.	1,3			
	6.2	Biomaterials: Basic concept, classes, application.				
		Semiconductors: Introduction. Intrinsic and extrinsic				
		semiconductors. Material preparation technique. Applications.		04		
		Magnetic Material: Introduction, Classification of Magnetic				
	6.3	Materials. Magnetic Dipoles and Magnetic Moments.	1,2,3			
		Diamagnetic, Paramagnetic, Ferromagnetic, Ferrimagnetic, and				
		Superparamagnetic Materials				
		Total		26		
2 5332						

Course Assessment:

Theory:

ISE-1: Quiz (20 Marks) ISE-2: Quiz (20 Marks)

MSE: Two hours of written examination based on 50% syllabus (30 Marks)

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Tutorial

<u>ISE-1</u>

Lab activity:

Superimposition of the cooling curve on the TTT plot.

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Drawing and labeling of Iron-Carbon Phase Diagram.

<u>Assignments:</u> One assignment each on any 3 out of 6 modules.

Continuous pre-defined rubrics-based evaluation for 20 marks.

<u>ISE-2</u>

Presentations by students in groups of 3 on recent topics related to Materials Science and Engineering (30 marks)

Recommended Books:

Text books:

- [1] Materials Science and Engineering: An Introduction, 9 th edition by William D. Callister Jr. Adapted by R. Balasubramaniam. Wiley India (P) Ltd (2020).
- [2] Materials Engineering, Dhirendra Kumar Dwivedi, All India Council for Technical Education, December 2022.

Reference Books:

- [3] The Science and Engineering of Materials, 7 th edition by Donald R. Askeland, Wendelin JWright, Cengage Learning (2016).
- [4] Materials Science and Engineering, 6 th edition by V. Raghavan, Prentice Hall India(2015).

AICTE Prescribed Textbook:

Materials Engineering, – Dhirendra Kumar Dwivedi, All India Council for Technical Education, December 2022.

(https://ekumbh.aicte-india.org/allbook.php#)

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned			ed			
		L	T	P	L	T	P	Total
				2			1	1
25PCC12ME10	Materials and Material		E	xamina	tion Sc	heme		
	Testing		ISE1	MSE	ISE2	ESE	To	otal
		Practical	20		30		4	50

Pre-requisite Course Codes	-	
	CO1	Able to determine the hardenability of steel samples.
	CO2 Compare different microstructures of steel samples	
Canna Onta mas	СОЗ	Predict the heat treatment required to impart required properties in samples.
Course Outcomes	CO4	Perform impact, tensile, and fatigue tests on the given components.
	CO5	Conduct compression and bending test on wooden samples.

Sr. No.	Experiments Details	Hours
1	Impact Testing on steel specimen (Charpy and Izod test).	2
2	Determination of hardenability of steel using the Jominy End Quench Test.	2
3	Sample preparation for metallographic observations.	4
4	Experiments based on any two heat treatment methods.	2
5	Fatigue test on a steel rod.	2
6	Tensile test on a mild steel rod.	4
7	Compression test on a wooden block.	2
8	Bending test on a wooden specimen.	2
	Total	20

Course Assessment:

Laboratory work:

2. ISE-1 (20 marks)

Submission of the observations made during the lab performance for the first 4 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics.

2. ISE-2 (30 marks)

- iii. Submission of the observations made during the lab performance for the last 4 experiments covered during this assessment duration. Assessment will be based on pre-defined rubrics (20 marks).
- iv. Lab interaction: (10 marks)

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Text books:

- [1] Materials Science and Engineering: An Introduction, 9 th edition by William D. Callister Jr. Adapted by R. Balasubramaniam. Wiley India (P) Ltd (2020).
- [2] Materials Engineering, Dhirendra Kumar Dwivedi, All India Council for Technical Education, December 2022.

Reference Books:

- [3] The Science and Engineering of Materials, 7 th edition by Donald R. Askeland, Wendelin JWright, Cengage Learning (2016).
- [4] Materials Science and Engineering, 6 th edition by V. Raghavan, Prentice Hall India (2015).

AICTE Prescribed Textbook:

Materials Engineering, – Dhirendra Kumar Dwivedi, All India Council for Technical Education, December 2022.

(https://ekumbh.aicte-india.org/allbook.php#)

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name		ng Sche s/week)		(Credits	Assign	ied
		L	T	P	L	T	P	Total
			-	2			1	1
25PCC12ME11	Thermal Engineering	Examination Scheme						
	Laboratory		ISE1	MSE	ISE2	ESE	Γ	`otal
		Practical	20		30			50

Pre-requisite Course Codes	Thern	nodynamics
	CO1	Explain the working principles of boilers, boiler mountings, and accessories.
	CO2	Elucidate the core concepts and applications of refrigeration and air conditioning systems.
	СОЗ	Understand different HVAC&R components and assess the performance of various refrigeration systems.
Course Outcomes	CO4	Assess the performance and emissions characteristics of petrol and diesel engines under different operating conditions.
	CO5	Determine frictional power and mechanical efficiency of multi-cylinder petrol engines using the Morse test.
	CO6	Conduct heat balance analysis on internal combustion engines and interpret efficiency and energy distribution.

Sr. No	List of Experiment	Hrs.				
1	Study of Boilers, Boiler Mountings and Accessories	2				
2	Investigating the performance (COP, tonnage, Refrigeration efficiency) of an open air conditioning unit.	2				
3	Assessment of the performance (COP, tonnage, Refrigeration efficiency) of an ice-plant test rig.					
4	Evaluation of the performance of a cooling tower.					
5	Study and assessment of an electrolux refrigeration unit.					
6	Study of performance and emissions characteristics of a Single Cylinder/Multi Cylinder, Two/Four stroke petrol Engine at constant Speed/Load.					
7	Determination of frictional power and mechanical efficiency of the Multi-cylinder Petrol Engine by Morse test.					
8	Study of performance and emissions characteristics of a Single Cylinder/ Multi Cylinder, Two/Four stroke petrol Engine at constant Speed along with heat balance sheet.	2				

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

9	Study of performance and emissions characteristics of a Single Cylinder, Four- stroke Diesel Engine at constant speed (With Electrical/ Rope Brake Dynamometer) (Load Test) along with Heat Balance Sheet.	2
10	Industrial Visit to a Power Plant	2
	Total	22

Course Assessment:

Laboratory Work

<u>ISE-1:</u>

Experiments 1-5

Continuous pre-defined rubrics-based evaluation for 20 marks.

ISE-2

Remaining experiments.

Continuous pre-defined rubrics-based evaluation for 30 marks.

Reference Books:

- 1. Refrigeration and Air Conditioning C. P. Arora, McGraw Hill
- 2. Heating, Ventilation, and Air Conditioning: Analysis and Design Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler, Wiley
- 3. Refrigeration and Air Conditioning R. S. Khurmi & J. K. Gupta, S. Chand Publications
- 4. Internal Combustion Engines V. Ganesan, McGraw Hill
- 5. Internal Combustion Engine Fundamentals John B. Heywood, McGraw Hill

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						ed
		L	T	P	L	T	P	Total
		2			2			2
25OE02	Emerging Technology		F	Examina	tion Sc	heme		
25OE02	and Law		ISE1	MSE	ISE2	ESE	To	otal
		Theory	50		50		100	
		Practical						

Pre-requisi	te Cou	rse Codes MDM01
	CO1	To recognize the importance of legal technology domain
	CO2	To demonstrate awareness of the laws related to emerging technologies and
Course		legal implications of their work
Course Outcomes	CO3	To demonstrate understanding of the impact of emerging/contemporary
		technologies on the legal ecosystem
	CO4	To demonstrate awareness about company laws, FEMA and few other
		important acts related to engineering design and consumer protection

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Tech Legal Market	1	4
	1.1	Legal Marketplace, Impact of Technology on Legal Profession		
	1.2	How technologists can help reshape legal system		
	1.3	Career Development in Legal Tech Domain		
2		Emerging Technologies and Legal Implications-1	1	8
	2.1	Cyber Crimes, Cyber Threats and Issues: Information		
		Technology Act 2000		
	2.2	Blockchain and Legal Issues		
	2.3	Legal Implications of Artificial Intelligence		
	2.4	Electronic and Digital Signatures		
	2.5	Implications of Social Media Laws		
3		Emerging Technologies and Legal Implications-2	1	6
	3.1	Legal Ecosystem for Autonomous Vehicles and Unmanned		
		Aerial Vehicles (UAV)		
	3.2	Privacy and Data Protection with a Trillion Connected &		
		Cognitive Devices		
	3.3	Legal Ecosystem for 5G		
4		Company Laws	2,3	4
	4.1	Companies Act, 1956- Nature and Meaning, Classification of		
		Companies, Incorporation of Companies		
	4.2	Sources of Capital, Board of Directors, Company Meetings	2,3	
5		Regulation and Management of Foreign Exchange		2
	5.1	Foreign Exchange Management Act FEMA 1999		
6		Other Important Laws	2,3	2
	6.1	Consumer Protection Act, Competition Act 2002, Semiconductor		
		Integrated Circuits Layout-Design Act 2000, Designs Act 2000,		
		Bureau of Indian Standards Act 2016,		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Total	26

Course Assessment:

ISE-1: Quiz: 20 Marks

Activity: Negotiation: 30 Marks

ISE-2: Quiz: 20 Marks

Activity: Moot Court: 30 Marks

Recommended Books:

[1] N. S. Nappinai, "Technology Laws Decoded," LexisNexis, 2017

[2] Vibha Arora and Kunwar Arora, "Law for Engineers" Central Law Publications, 2017

[3] Vandana Bhatt and Pinky Vyas, "Laws for Engineers", ProCare, 2015

Fr. Conceicao Rodrigues College of Engineering
Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050
(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
		L	T	P	L	T	P	Total	
		2			2			2	
25OE02	Duimainles of	Examination Scheme							
25OE02	Principles of		ISE1	MSE	ISE2	ESE	Total		
	Management	Theory	50		50		100		
		Practical							

Pre-requisite Course Codes							
	1	completing the given assignments and experiments, students e able to:					
	CO1	Understand the evolution of management theories and their relevance today					
	CO2	Apply planning tools and techniques to real-world business scenarios					
Course Outcomes	СОЗ	Understand effective organizational structures based on business requirements					
	CO4	Study different leadership styles and apply appropriate leadership techniques in various situations.					
	CO5	Recognize ethical dilemmas in management and apply responsible decision-making frameworks.					
	CO6	Study critical thinking and problem-solving techniques to organizational issues.					

Module No.	
	Introduction to Management
1	Definition and Nature of Management: Understanding management as a process and its significance in organizations. Historical Evolution: Exploration of classical management theories, including contributions from Henri Fayol and Frederick Taylor. Managerial Roles and Skills: Analysis of the roles managers play and the skills required at different managerial levels.
2	Planning Strategic and Tactical Planning: Differentiating between long-term strategic planning and short-term tactical planning. Decision-Making Processes: Tools and techniques for effective managerial decision-making. Goal Setting and Management by Objectives (MBO): Establishing clear objectives and aligning them with organizational goals
3	Organizing Organizational Structure and Design: Examining various organizational structures and their impact on efficiency. Delegation and Authority: Understanding the distribution of authority and responsibility within an organization. Coordination and Communication:

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

	Strategies for effective internal communication and coordination among departments.
4	Leadership Theories and Styles: Study of different leadership models and their applicability. Motivation Techniques: Exploring theories of motivation and their implementation in the workplace. Team Dynamics and Group Behavior: Insights into managing teams and understanding group behavior.
5	Control Systems and Processes Establishing standards and monitoring performance. Financial Controls: Budgeting, financial reporting, and variance analysis. Quality Management: Introduction to quality control techniques and continuous improvement processes.
6	Contemporary Issues in Management Ethics and Social Responsibility: The role of ethics in managerial decisions and corporate social responsibility. Globalization and Management: Challenges and strategies in managing international operations. Innovation and Change Management: Managing organizational change and fostering innovation.

Assessment:

Quiz based on Module 1,2 and 3 (20 Marks) **ISE-1:**

Case study / Application with PPT Presentation (Group of 4 students) of

Decision Making Process Approach, MBO (30 Marks)

ISE-2: Quiz based on Module 4,5 and 6 (20 Marks)

> Case Study / Application / Research Literature Studies with PPT Presentation (Group of 4 students) on Leadership in Organization, Innovation and Change

Management, continuous improvement processes (30 Marks)

Note: ISE will be based on Continuous predefined rubrics based evaluation

References:

- 1. Koontz, H., & Weihrich, H. (2010). Essentials of Management: An International Perspective (8th ed.). McGraw-Hill Education.
- 2. Robbins, S. P., & Coulter, M. (2017). Management (13th ed.). Pearson Education.
- 3. Daft, R. L. (2018). Management (13th ed.). Cengage Learning.
- 4. Stoner, J. A. F., Freeman, R. E., & Gilbert, D. R. (1995). Management (6th ed.).
- 5. Drucker, P. F. (2006). The Practice of Management. HarperBusiness.
- 6. Academy of Management Journal Provides peer-reviewed research articles on management theory and practices.
- 7. Journal of Management Studies Features cutting-edge research in all fields of management.

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned			ed			
		L	T	P	L	T	P	Total
				4			2	2
25VSE12ME03	Computer Aided	Examination Scheme						
	Machine Drawing		ISE1	MSE	ISE2	ESE	To	otal
	_	Practical	50		50		1	00

Pre-requisite Course Codes	ESC1	ESC11ME01					
		Learner will be able to					
Course Outcomes	CO1	Illustrate basic understanding of types of CAD model creation.					
	CO2	Visualize and prepare 2D modeling of a given object using modeling software.					
	CO3	Build solid model of a given object using 3D modeling software.					
	CO4	Visualize and develop the surface model of a given object using modeling software.					
	CO5	Generate assembly models of given objects using assembly tools of a modeling software					
	CO6	Perform product data exchange among CAD systems.					

Sr. No.	Practical Details	Ref	Duration
1	CAD Introduction, CAD models Creation, Types and uses of	1,2,3,4,	4
1	models from different perspectives. Parametric modeling.	5,6,7,8	
	2D Modeling Geometric modeling of an Engineering	1,2,3,4,	
2	component, demonstrating skills in sketching commands of	5,6,7,8	8
2	creation (line, arc, circle etc.) modification (Trim, move, rotate etc.) and viewing using (Pan, Zoom, Rotate etc.)		
	Solid Modeling 3D Geometric modeling of an Engineering	1,2,3,4,	
3	component, demonstrating modeling skills using commands like	5,6,7,8	10
	Extrude, Revolve, Sweep, Blend, Loft etc		
	Surface Modeling Extrude, Sweep, Trim etc and Mesh of	1,2,3,4,	
4	curves, free form surfaces etc. Feature manipulation using	5,6,7,8	8
	Copy, Edit, Pattern etc.		
	Assemble the components using assembly Constraints,	1,2,3,4,	
5	Exploded views, interference check. Drafting (Layouts,	5,6,7,8	8
	Standard & Sectional Views, Detailing & Plotting).		
-	Data Exchange CAD data exchange formats Like IGES, PDES,	1,2,3,4,	
6	PARASOLID, DXF and STL along with their comparison and applicability	5,6,7,8	8

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment

1. ISE-1 (50marks)

Term work

Printouts/Plots: 40 marks Lab interaction: 10 marks

Using the above knowledge and skills acquired through six modules students should complete Minimum three assemblies from the given sets of assignments using standard CAD modeler like PTC Creo/CATIA/ Solid work/UG /any other suitable software.

Set 1: 3D modeling of basic Engineering components likes Nuts, Bolts, Keys, cotter, Screws, Springs etc.

Set 2: 3D modeling of basic Machine components like Knuckle joint, Couplings: simple, muff, flanged Protected flange coupling, Oldham's coupling, Universal coupling.

2. ISE-2 (50 marks)

Printouts/Plots: 20 marks

- i. 3D modeling of basic Machine components like Clapper block, Single tool post, Shaper tool head slide, jigs and fixtures, element of engine system and Miscellaneous parts.
- ii. Generation of any Assembly model (minimum five child parts) along with Production drawing for any of the system by creating 3D modeling with assembly constraints, Interference check, Exploded view, GD&T, Bill of material.
- iii. Reverse Engineering of a physical model: disassembling of any physical model having not less than five parts, measure the required dimensions of each component, sketch the minimum views required for each component, convert these sketches into 3-D model and create an assembly drawing with actual dimensions
- iv. End Semester Practical/Oral examination:

To be conducted by pair of Internal Examiners

- 1. Practical examination duration is two hours, based on Advance level of the Term work. Oral examination should also be conducted to check the knowledge of CAD Modeling Tools.
- 2. The distribution of marks for practical examination shall be as follows:
- a. Practical Exam20 marks
- b. Oral Exam..... 10 marks
- 3. Evaluation of practical examination to be done based on the printout of students work
- 4. Students work along with evaluation report to be preserved till the next examination

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Recommended Books:

Text books:

- [1] Machine Drawing by N.D. Bhatt.
- [2] A textbook of Machine Drawing by Laxminarayan and M.L.Mathur, Jain brothers Delhi
- [3] Machine Drawing by Sidheshwar and Kanheya

Reference Books:

- [4] Machine Drawing by Kamat and Rao
- [5] Machine Drawing by M.B.Shah
- [6] A text book of Machine Drawing by R.B.Gupta, Satyaprakashan, Tech. Publication
- [7] Machine Drawing by K.I. Narayana, P. Kannaiah, K. Venkata Reddy
- [8] Autodesk Inventor 2011 for Engineers and Designers by ShamTickoo and SurinderRaina, Dreamtech press

AICTE Prescribed Textbook:

Computer Aided Machine Drawing Practice by Dr. Kanak Kalita

(https://ekumbh.aicte-india.org/allbook.php#)

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					ed		
25EEM12ME02		L	T	P	L	T	P	Total	
		2			2			2	
	Technology		Examination				tion Scheme		
	Entrepreneurship		ISE1	MSE	ISE2	ESE	T	otal	
		Theory	Theory 50 50					100	
		Practical							

Pre-requisi	Pre-requisite Course Codes		PCC11ME01			
CO1 Identify pro		Identify prob	plems worth solving			
Course	CO2	Craft value	raft value proposition			
Outcomes	CO3	CO3 Prepare B-Plan				
	CO4	Register virt	ual company			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Opportunity Discovery	1	6
	1.1	Self-discovery		
	1.2	Effectuation Principle		
	1.3	Identification of problem worth solving		
	1.4	Looking for solutions		
	1.5	Present the problem		
2		Value Proposition Canvas and Business Model	2,3	7
	2.1	Craft your value proposition		
	2.2	Presentation of Value Proposition Canvas		
	2.3	Business Model and Lean Approach (Finance, Marketing,		
		Operations)		
	2.4	Presentation of Lean Canvas		
3		Business Plan	4	6
	3.1	Creation of Business Plan		
4		Company Formation	5	7
	4.1	Promoters, Capital, Shareholders		
	4.2	Directors, DIN		
	4.3	Company Name, Registrations		
	4.4	Branding		
		Total	•	26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

<u>ISE-1:</u>

Quiz: 10 Marks

Assignment: Effectuation case study: 10Marks

Activity: Presentation of Value Proposition Canvas: 30 Marks Rubric Based assessment

<u>ISE-2:</u>

Quiz: 10 Marks

Assignment: Presentation of Lean Canvas: 10Marks

Activity: Virtual Company registration: 30 Marks Rubric Based assessment

Recommended Books:

- [1] Sarasvathym "Elements of Entrepreneurial Expertise (New Horizons in Entrepreneurship Series)" Edward Elgar Publishing.
- [2] Alexander Osterwalder "Business Model Generation : A Handbook for Visionaries, Game Changers, and Challengers"
- [3] Alex Osterwalder, Yves Pigneur, Greg Bernarda, Alan Smith, Trish Papadakos "Value Proposition Design: How to create Products and Services Customers Want"
- [4] Garrett Sutton "Writing Winning Business Plans"
- [5] M.C. Bhandari "Company Law Procedures" LexiNexis, 2018

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

Course Code	Course Name	Teach (H	C	Credits Assigned				
25VEC12ME02	Technology Innovation for Sustainable Development	L	T	P	L	T	P	Total
		1		2	1		1	2
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	Total	
		Theory						
		Practical	40		60		100	

Pre-requisite Course Codes		se Codes PCC11ME01				
Course Outcomes	CO1	Demonstrate a broad and coherent knowledge of United Nations Sustainable				
		Development Goals (SDGs)				
	CO2	Build the vocabulary and develop a nuanced understanding of the SDG				
		themes: people, planet, prosperity, peace and partnership				
	CO3	Identify technological solutions to address challenges of SDGs				
	CO4	Build the vision to explain how to create a technological solution for				
		sustainability				

Module	Unit	nit Topics		Hrs.
No.	No.			
1	What are SDGs		1,2,3	3
	1.1	Concept of Sustainability. The Role of UN and the Need for		
		SDGs. Why SDGs are important.		
	1.2	Introduction to 17 SDGs		
2		People Theme		4
	2.1	Sustainable development goals 1-5		
	2.2	Technological Solutions to advance people theme		
3		Planet Theme		6
	3.1	Sustainable development goals 6, 12-15	4,5	
	3.2	Technological Solutions to advance planet theme		
4		Prosperity Theme		7
	4.1	Sustainable development goals 7-11		
	4.2	Technological Solutions to advance prosperity theme		
5		Peace Theme	4,5	3
	5.1	Sustainable development goal 16		
	5.2	Technological Solutions to advance peace theme		
6		Partnership Theme	4,5	3
	4.1	Sustainable development goals 17		
	4.2	Technological Solutions to advance partnership theme		
		Total		26

Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

Course Assessment:

<u>ISE-1:</u> Initial Project Presentation (20 Marks) Activity: Creation of Short Movie: (20 Marks)

<u>ISE-2:</u> Poster Making Competition (20 Marks) Final Project Presentation (30 Marks) Report Writing (10 Marks)

Recommended Books:

- [1] https://sdgs.un.org/goals
- [2] https://sdgs.un.org/tfm
- [3] Himanshu Sharma, Tina Sobti "An Introduction to Sustainable Development Goals" 2018
- [4] Henrik Skaug Sætra "Technology and Sustainable Development" Routledge, 2023
- [5] Sinan Kufeoglu "Emerging Technologies: Value Creation for Sustainable Development", Springer International Publishing, 2022