

CURRICULUM STRUCTURE

FIRST YEAR UG: B.TECH

ELECTRONICS AND COMPUTER SCIENCE

REVISION: FRCRCE-2-25

Effective from Academic Year 2025-26 Board of Studies Approval: 28/02/2025 Academic Council Approval:14/02/2025 & 08/03/2025

Dr. DEEPAK BHOIR Dean Academics

Silvalit

Dr. SAPNA PRABHU HoD (ECS)

Justor

DR. SURENDRA RATHOD Principal

Preamble:

Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries.

We commit to ourselves to the effective implementation of UGC Regulations and NEP 2020 in its spirit.

Government of Maharashtra has directed Autonomous Colleges to revise their curriculum in line with National Education Policy (NEP) 2020 through Government Resolution dated 4th July 2023. Accordingly degree options are given to the students admitted from academic year 2024-25 based on UGC circulars and DTE quidelines ref no. 17/DTE/NEP-2020/2024/111 dated 4th June 2024 related to implementation of NEP. Based on recent recommendations of the GR, we are pleased to offer our holistic curriculum, a "H-Tree Model" of Engineering Education. A unique "H-Tree Model" of Engineering Education Curriculum is carefully designed to systematically develop IQ (Intelligence Quotient), PQ (Physical Quotient), EQ (Emotional Quotient) and SQ (Spiritual Quotient) of a learner. This curriculum aims at the development of an all-rounded personality with holistic approach to education in which learner receives 25% teacher-led learning, 25% peer learning, 25% self-learning and 25% experiential learning. The curriculum model is outcome based that focuses on learning by doing. Curriculum is designed to provide multiple learning opportunities for students to acquire and demonstrate competencies for rewarding careers. It ensures multiple choices to leaner acquiring skills through systematic planning. It has 7 verticals aligned to GR recommendations with strong science, and mathematics foundation and program core, sequel of electives, Multidisciplinary Minor courses, humanities & management courses and sufficient experiential learning through projects and semester-long industry / research internship along with employable skill-based courses. Learner gets an opportunity to acquire skills through NSDC aligned courses during summer vacations. Learner also gets additional option to choose the kind of degree i.e. Honors or Double Minor or Honors with Research.

Various steps are taken to transform teaching learning process to make learning a joyful experience for students. We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units.

Curriculum Structure for UG Programs at Fr CRCE w.e.f. A.Y. 2025-26

Nomeno	clature of the courses in the curriculum
Abbreviation	Title
BSESC	Basic Science & Engineering Science Courses
PCPEC	Program Core and Program Elective Courses
MDC	Multidisciplinary Courses
SC	Skill Courses
HSSM	Humanities, Social Sciences and Management
EL	Experiential Learning
LLC	Liberal Learning Courses
BSC	Basic Science Courses
ESC	Engineering Science Courses
PCC	Program Core Courses
PEC	Program Elective Courses
MDM	Multidisciplinary Minor
OE	Open Elective
VSEC	Vocational and Skill Enhancement Course
VSC	Vocational Skill Courses
SEC	Skill Enhancement Courses
AEC	Ability Enhancement Course
EEMC	Entrepreneurship, Economics and Management Course
IKS	Indian Knowledge System
VEC	Value Education
RM	Research Methodologies
CEFP	Community Engagement or Field Project
ELC	Experiential Learning Courses
PRJ	Project
INT	Internship
CC	Cocurricular Courses
DM	Double Minor
HR	Honors with Research

Credit Specification:

- Theory: 1 credit=13 to 15 hrs of teaching
- ✤ Lab: 1 Credit=26 to 30 hrs of lab work
- Studio Activities: 1 Credit= 26 to 30 hrs of creative activities
- Workshop Based Activities: 1 Credit=26 to 30 hrs of hands-on activities related to vocation/professional practice/skill based
- Seminar/Group Discussion: 1 Credit=13 to 15 hrs of participation
- Internship: 1 Credit=Per 2 weeks OR 36 to 40 hrs of engagement
- Field Based Learning/Practices: 1 Credit=26 to 30 hrs of learning activities
- Community Engagement Projects: 1 Credit=26 to 30 hrs of contact time along with 13 to 15 hrs of activities preparation, report writing, independent reading etc.

Credit requirements for different options of the Degrees:

Degree/SEM	I	Ш	III	IV	v	VI	VII	VIII	Total
B.Tech with	20	20	22	22	22	22	20	20	100
Multidisciplinary Minor		20	22	22	22	22	20	20	168
B.Tech with	20	20	22	22	22	22	20	20	100
Double Minor (Multidisciplinary & Specialisation Minor)		+2*	+4*	+4*	+4*	+4*	+2\$	+2\$	188
B.Tech with	20	20	22	22	22	22	20	20	100
Research and Multidisciplinary Minor		+2*	+4*	+4*	+4*	+4*	+2\$	+2\$	188

*Optional Credits \$ optional 2 credits can be earned either in VII or VIII Semester

1. Learners who earn a minimum of total **168 credits** will be awarded "**B.Tech in Engg. /Tech. with Multidisciplinary Minor (MDM)**" degree.

2. Learners will have the following options to earn B. Tech. in Engg. /Tech. degree in

a. Major Engg./Tech Discipline with Double Minor (Multidisciplinary and Specialization Minor)

b. Honors with Research and Multidisciplinary Minor

There is 2 credit course 'Introduction to Emerging Technologies' in SEM-II introducing various emerging technologies along with basics of various tracks under multidisciplinary, minor and research domain helping student in decision making for further options of learning.

a) Major Engg./Tech Discipline with Double Minor (Multidisciplinary and Specialization Minor) (additional 20 credits): 168 +18+2 (SEM-II)=188 Min Credits.

There will be four courses (4 credits each), one in each semester starting from the 3rd semester which will be from emerging areas of specialisation. In 7th or 8th semester students will complete 2 credits seminar/project. Admission eligibility min CGPA=7.5 after First year

b) B.Tech in Engg./ Tech.- Honors with Research and Multidisciplinary Minor (additional 20 credits by research): 168 +18+2 (SEM-II)=188 Min Credits. (Admission eligibility min CGPA=7.5 after First and should maintain CGPA=7.5 after Third year)

3. Learner can earn the certificate/Diploma/Degree based on his/her exit from the program as follows. College shall explore feasibility to offer NSDC aligned skill based courses to the learners:

a. UG Certificate: After a one-year (40 credits to be earned) and 8-credits summer workshop/vocational courses/internship

b. UG Diploma: After two-years (80 credits to be earned) and 8-credits summer workshop/vocational courses/internship/Project

c. B. Voc.: After three-years (120 credits to be earned) and 8-credits summer workshop/vocational courses/internship/Project

Salient Features of Curriculum:

- ✓ Framed as per Government Resolution dated 4th July 2023 in line with National Education Policy (NEP) 2020.
- ✓ Minimum 165 choice-based credit structure with options of Degrees earning additional credits
- ✓ Unique 'H-Tree' Model of Curriculum: Hybrid model for holistic development with happy learning environment having bridge connecting verticals providing unique path for each learner for 3-dimensional growth, Life Long Learning, multiple entry-exit, inclusive model indicating equal distribution of central resources
- ✓ More emphasis on laboratory based and experiential learning
- ✓ More weightage to continuous assessment to reduce examination stress
- Mandatory Semester-long internship, courses with emotional & spiritual learning and skill-based learning aligned with NSDC framework
- ✓ Well balanced curriculum to attain Program Outcomes and skills of 21st century learner
- Curriculum is designed to create excitement among learners for education through stories, activities, collaboration, hackathon, contest, case studies, creative art etc.
- ✓ Curriculum is designed to make graduates responsible citizens of country with future ready skills to handle challenges of 21st Century

SEMESTERWISE CURRICULUM STRUCTURE

UG Electronics and Computer Science Program:

			SEM-I									
Course Code	Course	Sub- Vertica	Course Name		Contact Hours			ination N dit=50 N			Crea	lits
course code	Vertical	l	Course Name		Contact Hours	ISE1	MSE	ISE 2	ESE	Tota I	Points	Tota I
				TH	2	20	30	20	30	100	2	
25BSC11EC01	BSESC	BSC	Matrices and Differential Calculus	Т	1	20	-	30	-	50	1	3
				U								
25BSC11EC02	BSESC	BSC	Fundamentals of Electromagnetics &	TH	2	20	30	20	30	100	2	3
			Semiconductor Devices	PR	2	20	-	30	-	50	1	_
25ESC11EC01	BSESC	ESC	Engineering Graphics	TH	2	20	30	20	30	100	2	3
				PR	2	20	-	30	-	50	1	
25ESC11EC02	BSESC	ESC	Basic Electrical and Electronics Engineering	TH	2	20	30	20	30	100	2	3
				PR	2	20	-	30	-	50	1	
25PCC11EC01	PCPEC	PCC	Innovation and Design Thinking	PR	2	20	-	30	-	50	1	1
25PCC11EC02	PCPEC	PCC	Essential Computing Skills for Engineers	PR	4	50	-	50	-	100	2	2
25VSE11EC01	SC	VSEC	Measuring Instruments and Testing Tools	PR	4	50	-	50	-	100	2	2
25.150145004				TH	1			60		400	1	
25AEC11EC01	HSSM	AEC	Art of Communication	PR	2	40	-	60	-	100	1	2
25LLCXX	LLC	CC	One Course from CC	PR	2	-	-	50	-	50	2	1
				Total	TH:TU:PR 9:1:20=30					1000	-	20

			SEM-I									
Course Code	Course Vertical	Sub- Vertical	Course Name		Contact Hours			Examina (1 Credit			Credits	
	vertical	vertical			Hours	ISE1	MSE	ISE2	ESE	Total	Points	Total
25BSC11EC03	BSESC	BSC	Integral Calculus and Probability Theory	TH	2	20	30	20	30	100	2	3
25050111005	DJLJC	bsc	integral Calculus and Flobability Theory	TU	1	20	-	30	-	50	1	5
25BSC11EC04	BSESC	BSC	Engineering Chemistry	TH	2	20	30	20	30	100	2	3
23830112004	B3E3C	BSC	Engineering Chemistry	PR	2	20	-	30	-	50	1	5
25ESC11EC03	BSESC	ESC	Programming Fundamentals	TH	2	20	30	20	30	100	2	3
ZJEJCIIECUJ	B3E3C	ESC	Frogramming Fundamentals	PR	2	20	-	30	-	50	1	5
25ESC11EC04	BSESC	ESC	Human Health Systems	TH	1	50	-		-	50	1	1
25PCC11EC03	PCPEC	PCC	Digital Electronics	TH	2	20	30	20	30	100	2	3
ZJFCCIIEC03	FCFEC	FCC	Digital Electronics	PR	2	20	-	30	-	50	1	5
25PCC11EC04	PCPEC	PCC	Essential Psychomotor Skills for Engineers	PR	4	50	-	50	-	100	2	2
25VSE11EC02	SC	VSEC	Creative Coding in Python	PR	4	50	-	50	-	100	2	2
25IKS11EC01	HSSM	IKS	Indian Knowledge System	TH	2	50	-	50	-	100	2	2
25LLCXX	LLC	СС	One Course from CC	PR	2	50	-		-	50	2	1
25DM01/25HR01	DM/HR	DM/HR	Introduction to Emerging Technologies	TH	2	50	-	50	-	100	2	2*
				Total	TH:TU:PR 13:1:16=30			-	-	1100	-	20+2*

* Introduced as first course for DM/HR

NOTE: Kindly refer-

- 1. Separate Manual for List of 'Liberal Learning Courses (LLC)'
- 2. 'Manual for Degree Options' for List of Courses offered under MDM and DM Degree options.

Course Code	Course Name		ing Sch ·s/week		C	Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
		2	1	0	2	1	0	3	
25BSC11EC01	Matrices and Differential Calculus	Examination Scheme							
25DSCIIECUI			ISE	MS	ISE	ESE	Г	otal	
			1	Ε	2				
		Theory	20	30	20	30		100	
		Tutorial	20		30			50	

Pre-requisi	te Cou	rse Codes						
After the su	After the successful completion students should be able to:							
	CO1	Implement diagonalization of a given matrix using eigen values and eigen						
		vectors.						
Course	CO2	Execute Higher order derivatives of a given functions						
Outcomes	CO3	Apply partial differentiation technique to obtain the extremum of the given						
Outcomes		function.						
	CO4	Demonstrate basic knowledge of analytic functions in solving engineering						
		problems.						

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Matrices	1024	00
1	11		1,2,3,4	09
	1.1	Introduction: Types of Matrices (symmetric, skew-		
		symmetric, Hermitian, Skew Hermitian, Unitary,		
		Orthogonal Matrices and their properties).		
		Rank of a Matrix using Echelon forms, reduction to		
		normal form.		
	1.2	System of Linear equations, their consistency and		
		solutions.		
	1.3	Eigenvalues and Eigenvectors of a square matrix and their		
		properties(without proof)		
	1.4	Cayley-Hamilton Theorem (without proof), verification		
		and reduction of higher degree polynomials		
	1.5	Similarity of matrices, diagonalizable and non-		
		diagonalizable matrices		
2		Successive Differentiation	1,2,3,4	03
	2.1	Successive differentiation: nth derivative of standard		
		functions.		
	2.2	Leibnitz's Theorem (without proof) and problems		
3		Partial Differentiation	1,2,3,4	06
	3.1	Partial Differentiation: Function of several variables, Partial]	
		derivatives of first and higher order. Differentiation of		
		composite function.		

	3.2	Euler's Theorem on Homogeneous functions with two		
		independent variables (with proof). Deductions from Euler's Theorem.		
		Maxima and Minima of a function of two independent variables,		
4		Analytic Functions	1,2,3,4	08
	4.1	Function $f(z)$ of complex variable, Limit, Continuity and		
		Differentiability of $f(z)$, Analytic function: Necessary and		
		sufficient conditions for $f(z)$ to be analytic (without proof).		
	4.2	Cauchy-Riemann equations in Cartesian coordinates		
		(without proof).		
	4.3	Milne-Thomson method: Determine analytic function		
		f(z) when realpart		
		(u), imaginary part (v) or its combination au+bv is given.		
	4.4	Harmonic function, Harmonic conjugate and Orthogonal		
		trajectories.		
			Total	26

Tutorial

Exp. No.	Tutorial Details
1	Matrices
2	Successive Differentiation
3	Partial Differentiation
4	Analytic Functions
5	Matlab / Scilab Practical
6	Matlab / Scilab Practical
7	Matlab / Scilab Practical
8	Matlab / Scilab Practical

Course Assessment:

Theory:

ISE-1: MCQ: 20 Marks ISE-2: MCQ: 20 Marks MSE: 90 minutes 30 Marks written examination based on 50% syllabus ESE: 90 minutes 30 Marks written examination based on the syllabus after MSE

Tutorial:

1. ISE-1 will be conducted for the first two tutorials. (20 marks).

2. ISE-2 will be conducted for the remaining two tutorials (20 marks) and four Matlab / Scilab practical (10 marks).

Recommended Books:

- [1] Dr B.S. Grewal, "*Higher Engineering Mathematics*", Khanna Publications, 4nd Edition.
- [2] H. K. Das, "Advanced Engineering Mathematics", S. Chand, 28th Edition.
- [3] Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition.
 [4] Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publications, 4th Edition.

Course Code	Course Name		ing Sch rs/week		Cı	Credits Assigned				
		L	Т	Р	L	Т	P Total			
	Fundamentals of	2		2	2		1 3			
25BSC11EC02	Electromagnetics and Semiconductor Devices	Examination Scheme								
25D5CIIEC02			ISE1	MSE	ISE2	ESE	Total			
		Theory	20	30	20	30	100			
		Lab	20		30		50			

Pre-requisi	te Cou	rse Codes
	CO1	Solve problems related to electrostatics, magnetostatics and semiconductors.
	CO2	Describe the Laws of Electromagnetism
Course	CO3	Explain the principles behind semiconductor materials, band theory, and car-
Course Outcomes		rier transport.
Outcomes	CO4	Describe applications of semiconductors
	CO5	Demonstrate practical skills through laboratory experiments involving elec-
		tromagnetism as well as semiconductor devices

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Vector Calculus Scalar and Vector fields. Gradient, Divergence and Curl. Vector in- tegration, Line, Surface and Volume integrals, Fundamental theo- rems of Gradient Divergence and Curl. Scalar and Vector poten- tials.	T1	4
2		Electrostatics Calculation of electric field and electrostatic potential for a charge distribution; Divergence and curl of electrostatic field; Laplace's and Poisson's equations for electrostatic potential. Electrostatic field and potential of a dipole. Solving simple electrostatics problems.	T1	5
3		Magnetostatics Bio-Savart law, Divergence and curl of static magnetic field, Am- pere's Law, vector potential and calculating it for a given magnetic field using Stokes' theorem	T1	4
4		Electromagnetic Waves Faraday's law in terms of EMF produced by changing magnetic flux; equivalence of Faraday's law and motional EMF; Lenz's law Maxwell's equations, The wave equation; Plane electromagnetic waves in vacuum, their transverse nature and polarization; relation between electric and magnetic fields of an electromagnetic wave	T1	5
5		Semiconductors E-k diagram, Direct and indirect bandgap semiconductors, Density of states, Occupation probability, Fermi level and quasi-Fermi level (variation by carrier concentration and temperature), Conductivity & Mobility, carrier drift and Diffusion. Hall Effect.	T2	4
6		Application of Semiconductors PN Junction diode, Fermi Level in P-N Junction in biased and unbi- ased conditions, Metal-semiconductor junction (Ohmic and Schottky); LED: device structure, materials, characteristics, bandgap modification, heterostructures, Semiconductor materials of interest for optoelectronic devices, Light-semiconductor interaction.	T2	4

Course Assessment:

Theory:

ISE-1: 20 Marks Activity: Tutorials/Assignments i.e. problem solving on Electromagnetics

ISE-2: 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: 90 minutes 30 Marks written examination based on 50% syllabusESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Reflective journal analysis on the given problem statement for 10 marks

Guidelines for Laboratory Exercises:

- 1. Electromagnetics simulations using MATLAB/Virtual Labs
- 2. Semiconductor measurements: Hall Effect
- 3. Application of Semiconductor: PN Junction, Zener Diodes, LEDs, PV Cells.

Text Books:

- 1.Introduction to Electrodynamics: D J Griffiths, 4th Edition, Pearson.
- 2. Solid State Electronic Devices: Ben G. Streetman & Sanjay Kumar Banerjee, 7th Edition, Pearson.

Recommended Books:

- 1. Halliday and Resnick, Physics
- 2. Electromagnetics Vol-1: Steven W. Ellingson, VT Publishing, Virginia Tech(open Textbook)
- 3. Electricity, Magnetism & Electromagnetic Theory: S. R. Manohara & Shubha A, S. Chand Publications
- 4. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, 2008
- 5. Solid State Devices: B. Somanathan Nair & S. R. Deepa, 2nd Edition, Prentice Hall
- 6. Solid State Devices & Technology: V. Suresh Babu, 4th Edition, Pearson
- 7. Electricity and Magnetism: E. M. Purcell and D. J. Morin
- 8. Classical Electricity and Magnetism: Panofsky and Phillips
- 9. NPTEL/SWAYAM Course

Course Code	Course Name	Teaching Scheme (Hrs/week) Cr			redits A	edits Assigned		
	Engineering Graphics	L	Т	Р	L	Т	Р	Total
		2		2	2		1	3
25ESC11EC01		Examination Scheme						
25ESCIIECUI			ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	30	,	100
		Lab	20		30			50

Pre-requisi	te Cou	rse Codes					
After the su	After the successful completion students should be able to:						
	CO1 To draw Projection of Points, Lines and Planes						
	CO2	To draw pro	jections in Projection of solids				
	CO3	To draw sec	tional views in Section of solids and draw the development of				
Course		lateral surface	ces of solids with sections				
Outcomes	CO4	To apply the	e basic principles of projections in converting 3D view to 2D				
Outcomes		drawing.					
	CO5	To visualize	e an object from the given two views				
	CO6	To use Com	puter Aided Drafting tools for drawing various views including				
	iews						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Engineering Graphics		1
		Principles of Engineering Graphics and their significance, usage		
		of Drawing instruments, Types of Lines, Dimensioning Systems		
		as per IS conventions. Introduction to plain and diagonal scales.		
	1.2	Engineering Curves	1,4	2
		Basic construction of Cycloid, Involutes and Helix (of cylinder)		
		only.		
2	2.1	Projection of Points and Lines	1,4	3
		Lines inclined to both the Reference Planes (Excluding Traces of		
		lines) and simple application based problems on Projection of		
		lines.		
	2.2	Projection of Planes	1,4	1
		Triangular, Square, Rectangular, Pentagonal, Hexagonal and		
		Circular planes inclined to either HP or VP only. (Exclude		
		composite planes).		
	2.3	Projection of Solids	1,4	3
		(Prism, Pyramid, Cylinder, Cone only) Solid projection with the		
		axis inclined to HP and VP. (Exclude Spheres, Composite,		
		Hollow solids and frustum of solids). Use change of position or		
		Auxiliary plane method		
	2.4	Section of Solids	1,4	3
		Section of Prism, Pyramid, Cylinder, & Cone cut by plane		
		perpendicular to at least one reference plane (Exclude Curved		
		Section Plane). Use change of position or Auxiliary plane		

		method.		
3	3.1	Orthographic: - Fundamentals of orthographic projections.	1,4	3
		Different views of a simple machine part as per the first angle		
		projection method recommended by I.S. Full or Half Sectional		
		views of the Simple Machine parts		
	3.2	Sectional Orthographic Projections	2,4	3
		Full or Half Sectional views of the Simple Machine parts		
4	4.1	Isometric Views :- Principles of Isometric projection – Isometric	1,2,4	3
		Scale, Isometric Views, Conversion of Orthographic Views to		
		Isometric Views(Excluding Sphere).		
	4.2	Missing Views :The identification of missing views from the	1,2,4	3
		given views. Create the third view from the two available views		
		so that all the details of the object are obtained		
5	5.1	Development of Lateral Surfaces	1,4	3
		Lateral surface development of Prism, Pyramid, Tetrahedron,		
		Hexahedron, Cylinder, Cone with section plane inclined to HP		
		or VP only. (Exclude DLS of a solid with a hole in it and Reverse		
		Development)		
			Total	28

Course Assessment:

Theory:

ISE-1:

Team Activity: Two Hours Duration: 20 Marks

Making Models out of Card Boards/Clay for Basic Primitive solids. Solids will be cut by Section plane as per instructions provided Drawing Projections of Same as per instructions will be part of activity. Here Cut sections will also be developed using development principles. There will be small quiz or students will give a demonstration of Project or activity

Assessment will be done by two teachers in the department who are teaching engineering graphics

ISE-2: Two hours 20 Marks

Team Activity

Here One Simple component either machine component/Any simple component will be given to group of students in team. Students will measure dimensions and make working drawing of same showing all three views/sectional views including isometric view. At the end of activity Group will give presentation on same

MSE: 90 minutes **30 Marks** written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

	To be Taught in laboratory						
	Topics	Ref.	Hrs.				
1	Overview of Computer Graphics Covering:						
	Listing the computer technologies that impact on graphical communication						
	,demonstrating knowledge of the theory of CAD software such as: The						
	Menu System, Toolbars (Standard, Object Properties, Draw, Modify and						
	Dimension), Drawing Area (Background, Crosshairs, Coordinate System),						
	Dialog boxes and						
	windows, Shortcut menus (Button Bars), The Command Line (where						
	applicable), The Status Bar, Different methods of zoom as used in CAD,						
	Select and erase objects.						
2	Customization & CAD Drawing:	3	3				
	Consisting of set up of the drawing page and the printer including scale						
	settings, Setting up of units and drawing limits, ISO and ANSI standards for						
	coordinate dimensioning.						
3	Annotations, layering & other Functions Covering:	3	3				
	Applying dimensions to objects, applying annotations to drawings, Setting						
	up and use of layers, layers to create drawings, Create, edit and use						
	customized layers, Changing line lengths through modifying existing lines						
	(extend/lengthen), Printing documents to paper using the print command,						
	orthographic projection techniques, Drawing sectional views of objects						
	(simple machine parts).						
	Activities to be Completed in CAD Lab		1				
A1	Orthographic Projection (1 Problem)	3	4				
A2	Sectional Orthographic Projection (1 Problem)	3	4				
A3	Reading of Orthographic Projections (1 Problem)	3	3				
A4	Isometric Views (2 Problems)	3	3				
	Activities to be completed on A3 Size Sketchbook using Conventional To	ols					
A6	Projection of Solids (1 Problem)	1,4	2				
A7	Sections of Solids and Development of Lateral Surfaces (2 Problems)	1,4	2				
A8	Sectional Orthographic Views (1 Problem)	1,4	2				
	Total		29				

Course Assesment:- (Lab)

1. ISE-1 will be conducted for four activities (A1, A2, A3, A4) Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 will be conducted for four activities (A5, A6, A7, A8) Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:

[1] N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing

House Pvt. Ltd

- [2] N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.
- [3] Prof. Sham Tickoo (Purdue University) & GauravVerma, "(CAD Soft Technologies):Auto CAD 2012 (For engineers and Designers)", Dreamtech Press NewDelhi
- [4] Dhananjay A Jolhe, Engineering Drawing, Tata McGraw Hill.

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
		2		2	2		1	3	
25ESC11EC02	Basic Electrical		I	Examinati	ion Sche	me			
25ESCHECU2	and Electronics		ISE1	MSE	ISE2	ESE	Т	otal	
	Engineering	Theory	20	30	20	30	1	00	
		Lab.	20		30			50	

Pre-requisite	Course	e Codes				
	CO1	Apply various network theorems to analyze DC circuits.				
	CO2	Analyze single phase and three phase AC circuits.				
Course	CO3	Describe the constructional features and operation of single phase Transformer.				
Outcomes	CO4	Illustrate the working principle and applications of DC machines.				
	CO5	Explain the applications of P-N junction diode in rectifiers and filters for				
		converting AC to DC.				

Module No.	Unit No.	Topics	Ref.	Hours
		DC Circuits		
	1.1	Basic electrical quantities -: charge, current, voltage, power, and energy. Types of circuit elements: resistors, capacitors, and inductors. Ohm's Law and Kirchhoff's Laws. Types of sources	1,4	7
1	1.2	D.C. circuits and network simplification: series and parallel circuits, star-delta transformation, Mesh and Nodal Analysis, Source transformation.	1,4	
	1.3	DC Network Theorems: Superposition Theorem, Thevenin's Theorem, Maximum Power Transfer Theorem	1,4	
		AC Circuits		
2	2.1	Generation of alternating voltage & current (AC), fundamentals of AC - waveforms, Phasor representation of AC quantities, definitions of time period, amplitude, frequency, phase, RMS value and average value, Peak factor and Form Factor.	1,3	6
	2.2	R, L, C in AC circuits, Series RL, RC and RLC circuits- phase difference and power factor, phasor diagram, series-parallel circuits, active, reactive, apparent power, series resonance.	1,3	
		Three phase circuits		
3	3 Three phase circuits: voltage and current generation, advantages and applications, voltages, currents and power in Star connected and delta connected balanced circuits.			
	3.2	Relationship between phase and line currents and voltages in Star and Delta connected systems, Phasor diagrams	2,3	

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

	in, Dunascana, De	mara (m), ma	100 U	-
(Autonomous	College affiliated	l to University	y of Mumbai)	

		Single phase transformer		5
	4.1	Construction, principle of operation, types of transformer,	2,4	
4		induced emf equation and transformation ratio.		
-	4.2	Transformer at No load and Full load condition, phasor	2,4	
		diagrams, equivalent circuit, Losses in transformer, Regulation		
		and Efficiency.		
5		DC machines		
	5.1	Construction, principle of operation, classification of DC	3	2
		machines, applications of DC generator, DC motor, equation of		
		generated emf/back emf		
6		Semiconductor Diodes		
	6.1	Working of P-N junction Diode, I-V characteristic, application	6,7	2
		as a rectifier, and introduction to filters.		
			Total	26

Course Assessment:

(i) Theory:

ISE-1 for 20 Marks:

(a) Tutorial on independent solving of numerical examples (10 marks) - 2 hours(b) Multiple choice questions (MCQ) - 10 marks (1 hour)

ISE-2 for 20 Marks:

- (a) Multiple choice questions (MCQ) 10 marks (1 hour)
- (b) Circuit simulation for 10 marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabus ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

(ii) Lab: 40 Marks (08 experiments of 05 marks each) + 10 Marks (activity based) = 50 Marks ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Activity: Oral examination / viva-voce (10 marks) ISE-1:

Proposed List of Laboratory Experiments:-

- 1. Verification of Mesh and Nodal analysis.
- 2. Verification of Superposition Theorem.
- 3. Verification Maximum Power Transfer Theorem.
- 4. Measurement of electrical parameters for alternating sinusoidal voltage (AC)

5. To find resonance conditions in a R-L-C series resonance circuit

6. To measure relationship between phase and line, currents and voltages in three phase system

7. Forward & reverse bias characteristics of PN junction diode

8. Application of PN junction diode - rectifiers (full-wave)

Recommended Books:

- 1. V. N. Mittal and Arvind Mittal Basic Electrical Engineering, Tata McGraw Hill
- 2. B. L. Theraja Textbook of Electrical Technology, Prentice Hall of India (PHI)
- 3. Kothari & Nagrath Theory and Problems of Basic Electrical Engineering, PHI (13th edition)
- 4. B.R Patil Basic Electrical Engineering, Oxford Higher Education
- 5. Principles of Electrical Engineering Vincent Del Toro, Prentice Hall of India (PHI)
- 6. V. K. Mehta Principles of Electronics, S. Chand Publishing, New Delhi

7. R. S. Sedha – A Textbook of Applied Electronics, S. Chand Publishing, New Delhi

Course Code	Course Name	Teaching Scheme (Hrs/week) Cred				edits As	dits Assigned		
	Innovation and Design Thinking	L	Т	Р	L	Т	Р	Total	
				2			1	1	
25PCC11EC01		Examination Scheme							
25FCCIIECUI			ISE1	MSE	ISE2	ESE	ſ	otal	
		Theory							
		Lab	20		30			50	

Pre-requisi	Pre-requisite Course					
Codes						
At the end o	At the end of the course the students will be able:					
	CO1	To discuss case studies of innovative products and services.				
	CO2	To identify	the market needs and customer demand analysis.			
Course	CO3	To generat	e ideas through brainstorming and frame product/service idea			
Outcomes	CO4	To empath	ize with the customer.			
	CO5	To design	To design and develop a prototype.			
	CO6	CO6 To pitch their idea.				

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Innovation and Creativity:	1	04
		(Takeaway)		
		Innovation, Invention and Creativity. Mindset. Convergent and		
		Divergent Thinking. Case Studies – levels and types of		
		Innovations. Market Impact. Linear and Non-Linear		
		Innovations.		
		(Key Exercises)		
		1. Exercises/Games/Activities to boost creativity and		
		Inspiration		
		2. Article/Case Studies Discussion		
		3. Digital Market Survey Report and Customer Demand		
		Analysis, Preparing competencies report to identify		
		desired level of innovation & domain definition.		
2		Introduction of Design Thinking:	1,2	04
		(Takeaway)		
		Five stage model of design thinking. Empathize, Define, Ideate,		
		Prototype, Testing. Non-linearity of the Model.		
		(Key Exercises)		
		1. Live examples and videos		
		2. Design Thinking Activity for given problem		
		3. Find the impact and value of Innovation		
3	3.1	Empathize:	1,2	04
		(Takeaway)		
		Empathize with users. Step into the customer's shoes. Ask right		
		questions.What? Why? Empathy Map. Draw inference from		
		research.		
		(Key Exercises)		10

		1. Immersion Activity-Body Storming.		
		2. Finding the user needs in the market by using Social,		
		Physical, Identity, Communication, Emotional (SPICE)		
		Framework		
		3. Creation of Empathy Map, Affinity Map, Mind Map,		
		Journey Map		
		4. Story Telling, K-Scripts for case study, Role Playing		
4	4.1	Definition and Ideation:	3,4	04
		(Takeaway)		
		Idea Generation, Themes, Thinking for refinement, Storytelling		
		and Tools for Innovation		
		(Key Exercises)		
		1. Brainstorming, Sketch		
		2. Situation, Constraints, Objectives, People, Estimates and		
		Scope (SCOPES) tool		
		3. Social. Technology, Economy, Environment and		
		Political (STEEP) trend analysis for opportunity framing		
		by using steep matrix template.		
		4. Defining the strategic priorities of customer demand and		
		stakeholder mapping		
		5. Generating new ideas with Substitute, Combine, Adapt,		
		Magnify/Minify, Reverse, Eliminate, put to other use		
		(SCAMPER) tool.		
5	5.1	Prototyping:		06
		Prototyping, Testing for Desirable, Feasible and viable solution,	3,4	
		Product Market Fit, Business Model validation		
		(Takeaway)		
		(Key Exercises)		
		1. Value Proposition Canvas		
		2. Business Model canvas		
6		The Design Challenge:	4	04
		(Takeaway)		
		Define Design Challenge, Prototyping Iteration, Pitching, Media		
		(Key Exercises)		
		1. Demo day		
			Total	26

Course Assessment:

Lab:

ISE:

- **1. ISE-1** will be conducted for first three experiments. (Article discussion, Design thinking workshop for a sample idea, Empathy Map)
 - Continuous pre-defined rubrics-based evaluation for 20 marks.
- 2. ISE-2
- a. Idea Competition. Continuous pre-defined rubrics-based evaluation for 10 marks.
- b. Business Model Canvas for identified Idea for 10 marks
- c. Demo Day Prototype for 10 marks

Recommended Books:

- 1. Prof. Bala Ramadurai, "Karmic Design Thinking", ISBN-13 January 2020.
- 2. Idris Mootee, "Design Thinking For Strategic Innovation: What They Can't Teach You at Business or Design School", 2013, Wiley Publications.
- 3. Christoph Meinel, Larry Leifer, Hasso Plattner, "Design Thinking: Understand Improve *Apply*", Springer, 2011.
- 4. Roger Martin, "The Design of Businesses: Why Design Thinking is the next Competitive Advantage", Harward Business Press, 2009

Referenced Books:

- [1] Peter F. Drucker, "Innovation and Entrepreneurship", Routledge.
- [2] Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009 HarperBusiness.
- [3] Blake Masters, Peter Thiel, "Zero to One: Notes on Start Ups, or How to Build the Future"
- [4] Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses" 2011 Penguin
- [5] Andrew King, Jeanne Liedtka, Kevin Bennett, "Solving Problems with Design Thinking: Ten Stories of What Works", Columbia Business School Publishing, 2013.
- [6] Maurício Vianna, Ysmar Vianna, Isabel K. Adler, Brenda Lucena, Beatriz Russo, "Design *Thinking: Business Innovation Kindle Edition*", MJV Press 2011
- [7] Robert A. Burgelman, Clayton M. Christensen, Steven C Wheelwright, "Strategic Management of Technology and Innovation", McGraw-Hill, 2017, 5th Edition.

Online Courses:

https://www.classcentral.com/course/youtube-design-thinking-transforming-teams-110078 https://www.coursera.org/learn/uva-darden-design-thinking-innovation https://www.coursera.org/learn/creative-thinking-techniques-and-tools-for-success https://www.coursera.org/specializations/uva-darden-design-thinking learning.edx.org: Design Thinking and Creativity for Innovation

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned					ed	
	Essential Computing skills for engineers	L	Т	Р	L	Т	Р	Total
				4			2	2
25PCC11EC02		Examination Scheme						
25FCCIIEC02			ISE1	MSE	ISE2	ESE	Т	'otal
		Theory						
		Lab	50		50			100

Pre-requisite	Course				
Codes					
At the end of th	ne course	the students will be able :			
	CO1	Use Linux commands to perform file operations.			
	CO2	Use Matlab/ Scilab for scientific computing.			
Course	CO3	Use web technology to design web pages.			
Outcomes	CO4	Perform CRUD operations using relational databases.			
	CO5	Create scientific document using LaTeX.			
	CO6	Perform data analysis using spreadsheet.			

Modu le No.					
1		Introduction to Linux Operating System	[1]	08	
	1.1	Demonstration of installation of Linux Operating System	[1]		
	1.2	Linux command prompt usage, Use of man command, Linux directory structure, finding present working directory in Linux, listing files and directories with different options, changing the directory, creating files and directories using Linux commands	[1]		
	1.3	Deleting files with rm, deleting folder with -d & -r, moving files and folders with mv, renaming with mv, copying with cp, use of cat command, the wc command, the sort command, Redirection in Linux, Introduction to piping, use of nano and/or vi editor	[1]		
	1.4	Use of locate and find commands, Use of Grep in Linux, use of chmod and chown for giving permissions in Linux	[1]		
2		Introduction to Scientific Computing using Matlab/ Scilab	[2]	10	
	2.1	Introduction to Matlab/Scilab, getting data into Matlab/Scilab, creating, concatenating and reshaping arrays, Accessing data in arrays, mathematical and statistical operations with arrays	[2]		
	2.2	Taking user input, control structures for making decisions and adapting to different situations, conditional data selection	[2]		
	2.3	Visualizing data using 2D and 3D plots, introduction to toolboxes for different scientific computing tasks, creating and calling functions	[2]		
	2.4	Introduction to tables of data, storing and sorting table data, extracting data from table, exporting tables, combining tables, [2]indexing into cell arrays, Working with date and time	[2]		

	2.5	Preprocessing data- normalizing data, working with missing data	[2]	
3		Foundations of web technology	[3]	10
	3.1	HTML Basics- HTML tags and attributes, Headings in HTML, creating paragraphs in HTML, Basic formatting tags of HTML, giving background and font colors using HTML, creating links using HTML, Adding images in HTML	[3]	
	3.2	Creating tables and lists using HTML, creating forms in HTML, Embedding videos on web page	[3]	
	3.3	CSS syntax, CSS selectors, background formatting using CSS, CSS box model, adding borders, margins and padding using CSS, adding styles to fonts using CSS, Positioning using CSS, Pseudo- classes in CSS, CSS navigation bar, creating image gallery using CSS, use of external CSS for creating website layout	[3]	
	3.4	Introduction to Javascript, basic Javascript syntax, Variables in Javascript, operators and control structures in Javascript, functions in Javascript, arrays and number handling in Javascript,	[3]	
	3.5	DOM manipulation in Javascript, Form validation using Javascript	[3]	
4		Introduction to Database Technology	[4]	02
	4.1	Installation of MySQL/Postgresql, creating database schema and tables, DML operations, conditional selection of records from the database tables, demonstration of PHP-MySQL/Postgresql database connectivity	[4]	
5		Introduction to LaTeX	[5]	12
	5.1	Demonstration of installation and usage of Texlive/MikeTex, formatting words, lines and paragraphs, font formatting, creating section and subsections, use of geometry package	[5]	
	5.2	Insertion of graphics and tables in document, creation of lists, mathematics environment, writing equations	[5]	
	5.3	Writing algorithms, inserting code in document, creating table of contents, creating hyperlinks	[5]	
	5.4	Bibliography management, citations, creating chapters using report class, inserting other .tex and .pdf files in document	[5]	
	5.5	Presentation in LaTeX using beamer class, creating overlay in beamer, blocks in beamer presentation, presentation themes	[5]	
	5.6	Usage of style files in a document	[5]	10
6		Data analysis using spreadsheet	[6]	10
	6.1	Introduction to Microsoft Excel/Open office Calc/Google Sheets, functionality using ranges, use of formulae for basic data analysis (sum, average, if, count, min, max, proper, upper, lower, autosum), sorting, filter, text to column, data validation	[6]	
	6.2	Use of advance formulae for data analysis (concatenate, vlookup, hlookup, match, countif, text, trim)	[6]	

6.3	Creating pivot tables, manipulating pivot table, usage of pivot table tool bar, changing data field properties, displaying a pivot		
	chart, setting pivot table options, adding subtotals to pivot tables		
6.4	Data visualization- creating 2D and 3D plots	[6]	
6.5	Data visualization using conditional formatting- creating formula-based rules	[6]	
		Total	52

Course Assessment:

ISE:

- 1. ISE-1
 - a. Quiz based on module 1 for 10 marks.
 - b. Completion of any 4 courses from suggested list on module 2 for 20 marks. Suggested URL and course list:

https://matlabacademy.mathworks.com/

- 1. MATLAB Onramp
- 2. Simulink Onramp
- 3. App Building Onramp
- 4. Object-Oriented Programming Onramp
- 5. Simscape Onramp
- 6. Circuit Simulation Onramp
- c. Quiz based on module 2 for 10 marks.
- d. Assignment (web page designing) based on module 3 for 10 marks.
- 2. ISE-2
 - a. Quiz based on module 4 for 10 marks.
 - b. Assignment (Scientific Document Preparation using LaTeX) based on module 5 for 20 marks.
 - c. Assignment (data analysis using spreadsheet) based on module 6 for 20 marks.

Recommended References:

- [1] <u>https://ubuntu.com/tutorials?topic=desktop</u>
- [2] <u>https://in.mathworks.com/support/learn-with-matlab-tutorials.html</u>
- [3] https://www.w3schools.com/
- [4] https://www.mysql.com/
- [5] https://en.wikibooks.org/wiki/LaTeX
- [6] <u>https://support.microsoft.com/en-us/office/excel-video-training-9bc05390-e94c-46af-a5b3-d7c22f6990bb</u>

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned					ed	
	Measuring Instruments and Testing Tools	L	Т	Р	L	Т	Р	Total
				2			2	2
25VSE11EC01		Examination Scheme						
25VSEIIECUI			ISE1	MSE	ISE2	ESE	Te	otal
		Theory						
		Lab	50		50		1	00

Pre-requisi	te Cou	rse Codes						
After succes	sful co	mpletion of the course, the student will be able to:						
	CO1	Have a working knowledge about the measurement process, units of measurements, static and dynamic characteristics of instrument.						
	CO2 Identify and classify types of test & measuring instruments that are avain the laboratory							
Course Outcomes	CO3	Find out and verify the manufacturers, make, models, market cost and specifications of the given instrument						
Outcomes	CO4 Select a suitable test & measuring instrument for any given s application or a process							
	CO5	Understand the importance & significance of calibration of measuring instrument						
	CO6	Study various quality standards for Measurement, Inspection and Testing						

Teaching Learning Methodology: Role Play Model

a. Instructor

Responsibilities: Explain theoretical background, provide required sample formats, guide students in identification of appropriate online material, supervision and assessment of overall activity, summarize the activity

b. First Group of Students: Customer

Responsibilities: To finalize specifications of instrument to be purchased prepare request for quotations, prepare comparative statement, preparation for purchase order (PO)

c. Second Group of Students: Manufacturer / Vendor

Responsibilities: To maintain the specifications of manufactured instruments, to submit quotations including all applicable taxes, to prepare invoice as per purchase order (PO)

d. Third Group of Students: Sales/Service Engineer

Responsibilities: To demonstrate capabilities of various instruments and convince customer to purchase a particular instrument, to prepare Delivery Challan, Install the instrument and prepare Installation report, Demonstrate all the functions and uses of the instrument

Modul eNo.	Unit No.	Topics	Ref.	Hrs.			
		Introduction to Basic Concepts of Measurements	T1, T2,				
1	1.1	Introduction to the measurement process & its aim, functional elements of an instrumentation system, Need of Inspection, Go-NoGo Gauges. Difference between measuring instrument and Comparator.	T3, R3, R4	4			
1	1.2	Introduction to Standards such as IS/ BIS, NABL standards. Errors inmeasurement, types, classification, Calibration & its importance, Calibration method.		4			
	1.3	Difference between sensor and transducer, classification of Types of electrical, electronic and mechanical sensors		4			
		Units, Standards & Characteristics	T1, T2,				
2	2.1	Unit systems – MKS, CGS & SI for electrical & mechanical quantities	T3, R3, R4	4			
	 2 Quantities 2.2 Performance characteristics of instruments – static characteristics & dynamic characteristics, List of Manufacturers/ vendors dealing withsale, service and repair of measuring and test instruments. 						
		Mechanical Test & Measuring Instruments	T1, T2,				
	3.1	Measurement of linear dimensions using Vernier caliper.	T3, R3,	2			
	3.2	Measurement of gauge thickness using Screw Thread micrometer.	R4	2			
	3.3	Measurement & Marking dimensions using Vernier height gauge		2			
	3.4	Measurement of small dimensions by Optical Profile Projector Setting of dimensions using precision gauge blocks (slip gauges) by		2			
3	3.5	Wringing process. Identification of surface flatness defects using principle of interferometryby optical flats and monochromatic light.		2			
	3.6	Measurement of components deviations w.r.t. standard using mechanical comparator		2			
	3.7	Spirit Level for Alignment test	-	2			
	3.8	Feeler Gauges for Gap measurement		2			
	3.9	Thread Gauges for thread measurement		2			
		Electronic Test & Measuring Instruments	T4, R1,				
	4.1	Digital Multimeter	R2	2			
4	4.2	DC Power Supply		2			
	4.3	Function Generator		2			
	4.4	Digital Storage Oscilloscope (DSO)		2			
		Sensors & Transducers	T3, T5				
_	5.1	Proximity Sensors – Capactive, Inductance, Optical sensorsMechanical Limit Switch.		2			
5	5.2 5.3	Piezo-Transducers for Pressure measurement,Strain Gauge Load cell		4			
	5.4	Linear Variable Differential Transducer (LVDT)					
			Total	52			

Course Assessment:

Laboratory work: (ISE)

1. ISE-1

Total Marks: 50

- A) After completion of Module 1 and Module 2, **Online Quiz / Q/A Asignment of 30 marks** to be conducted to check theoretical knowledge of measuring instruments and testing tools.
- B) To conduct Minimum 4 experiment from the module 3 (Total marks = 4 x 5 = 20 marks)

2. ISE-2

Total Marks: 50

- A) To perform role play (Group Activity of 4 students each) (20 marks)
- B) To conduct Minimum 6 experiment from the module 3, 4, 5 (Total marks = 6 x 5 = **30** marks)

Text Books:

- 1. Engineering. Metrology, I.C. GUPTA, Dhanpat Rai Publications.
- 2. Engineering. Metrology, R. K. Jain, Khanna Publisher.
- 3. Engineering Metrology and Measurements, Raghavendra, Krishnamurthy, OUP India, 2013
- 4. Fundamentals of Micro-electronics, Behzad Razavi, Wiley Publications, 2008
- 5. Sensors and Transducers, Second Edition, D.Patranabis, PHI publications, 2003

Reference Books:

- 1. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital IntegratedCircuits: A Design Perspective", Pearson Education, 2nd Edition.
- 3. Engineering Metrology, K. J. Hume, Kalyani publication
- 4. Engineering. Metrology, Hume K.G., M C Donald, Technical & Scientific, London.

Society of St. Francis Xavier, Pilar's **Fr. Conceicao Rodrigues College of Engineering** Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

	, 00 01			,,	
(Autonomous	College	affiliated	to Uni	versity of M	lumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week)			LAURSE NAME CREAT				redits	Assign	ed
		L	Т	Р	L	Т	Р	Total			
	Art of	1		2	1		1	2			
25AEC11EC01	Communication	Examination Scheme									
	(AoC)		ISE1	MSE	ISE2	ESE	Т	otal			
		Lab	40		60		1	00			

Pre-requisi	te Cou	rse Codes Basic Language Skills	
After successful completion of the course, the student will be able to:			
	CO1	Understand the roots and fundamentals of communication.	
	CO2	Apply Strategies to develop vocabulary and grammar skills for competitive	
Course		exams	
Course Outcomes	CO3	Develop Listening, Reading, Speaking and Writing skills	
Outcomes	CO4	Acquire effective correspondence skills	
	CO5	Relate Communication to Management Information Systems in the	
		corporate sector	

Module No.	Unit No.	Topics	Ref.	Hrs.	
1		Introduction to Communication	1,2,3, 7		
	1.1	Ancient India and Communication: Roots of Communication skills in Indian Tradition, Importance of Communication, Cycle.		4	
	1.2Strengths and Weaknesses of Oral and Non-verbal Communication (Kinesics, Proxemics, Chronemics, Haptics, Oculesics, Olfactics, Paralanguage) Steps to Public Speaking: Planning your speech, Delivery of Speech, Dealing with stage fear				
	1.3	Barriers and Gateways in Communication: Types of barriers: Physical, Mechanical, Psychological, Semantic and Cross-cultural			
2	2.1	Verbal Ability in Competitive exams: English grammar and Strategies for UPSC/GATE/GRE/IELTS/TOEFL/CAT	4,5	2	
3	3.1 3.2 3.3	Communicative Competence Listening : Listening to two talks/lectures by specialists on selected subject Specific topics -(TED Talks) and answering comprehension exercises (inferential questions) Speaking: Small group discussions (the discussions could be	Video s, resear ch paper s	4	
	3.3 3.4	based on the listening and reading passages- open ended questions	5		

			Total	13
-	5.1	Introduction, Purpose, Structure, Characteristics, Limitation	-	
5		Management Information System	8	1
		Request/Permission		
	4.2	Application for internship		
		Introduction, Do's and Don'ts, Format and Types	, ,	
4	4.1	Effective Correspondence	1,2,3	2
		Writing : Review writing or writeup for public speaking		
		Speaking: Discussion on Ethics and on self-learning tasks		
		aspects)		
		Research paper (Environment, Sustainability and Social		
		Reading : Self-learning (Reading of Literary piece or		
		Listening : Motivational Talks or TED TALKS		
		Writing: Summary writing based on the reading passages.		
		comprehension activities/exercises		
		questions Reading :Two subject-based reading texts followed by		
		based on the listening and reading passages- open ended		
		Speaking : Small group discussions (the discussions could be		
		comprehension exercises (inferential questions)		
		selected subject specific topics -(TED Talks) and answering		
		Listening: Listening to two talks/lectures by specialists on		
		Writing: Summary writing based on the reading passages.		
		comprehension activities/exercises		
		Reading: Two subject-based reading texts followed by		

Sr. No.	Title of the assignments/Activities to be carried out in the Lab	Marks
1	Draft and Orally presenting Public speaking/ Extempore	10
2	Presentation/Poster Making - Modern times learning from Vedas/Upanishads/ Bhagvad gita/ Mahabharata	20
3	Aptitude Test on verbal ability	10
4	Listening skills: Quiz/ Subjective type questions	10
5	Reading& Writing skills: Reviewing a book/ Research paper	10
6	Speaking skills: Panel Discussion	10
7	Correspondence	10
8	Management Information system assignment	10
9	Communication module assignment	10
	Total	100

ISE1: 3 Activities

Public Speaking, Extempore, Aptitude test, presenting through Power point or Poster Making Marks: 40

Learning outcome: Acquiring public Speaking skills for formal events and improving verbal ability

PO10: Communication, PO9: Individual and Team Work, P12: Long Life Learning

ISE: 2 Activities, 4 assignments

Marks: 60 Marks Learning outcome: Efficiently developing listening, reading and writing skills P10: Communication, PO8: Ethics, PO9: Individual and Team Work, P12: Long Life Learning

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Communication Skills	2013	Shirley Mathews	Technical Publication, Pune	2022
2	English Vocabulary in Use	1999	Michael McCarthy, Felicity O'Dell	Cambridge University Press, India	1999
3	Oxford Practice Grammar	1999	John Eastwood	Oxford, India	1999
4	Communication Skills	2011	Meenakshi Raman, Sangeeta Sharma	Oxford, India	2011
5	English Grammar for Today	2005	Geoffrey Leech	Palgrave, UK	2005
6	Word Power Made Easy	1978	Norman Lewis	Anchor Books, New York	1978

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned				ed		
		L	Т	Р	L	Т	Р	Total
		2	1	0	2	1	0	3
	Integral Calculus and	Examination Scheme						
25BSC11EC03	Probability Theory		ISE1	MS	ISE2	ESE	Т	otal
				Ε				
		Theory	20	30	20	30		100
		Tutorial	20		30			50

Pre-requisi	Pre-requisite Course Codes						
	CO1	Execute first order linear differential equation.					
Course	CO2	Execute higher order linear differential equation.					
Course Outcomes	CO3	Interpret the region of integration in solving double integrals.					
Outcomes	CO4	Apply concepts of probability and expectation for getting spread of the					
		data and probability distributions.					

Theory:

Module No.	Unit No.	Topics	Ref.	Hrs.			
1	Title	Linear Differential Equations of first order	1,2,3,4	06			
	1.1	Exact Differential Equations, Integrating Factors, equations					
		reducible to exact form.					
	1.2	Linear differential equations (Definition), equations reducible					
		to linear form, Bernoulli's equation					
2	Title	Linear Differential Equations of higher order	1,2,3,4	07			
	2.1	Linear differential equation with constant coefficient-					
	complementary function, particular integrals of differential						
		equation of the type $f(D)y = X$ where X is e^{ax} , $sin(ax+b)$, $cos(ax+b)$, x^m , $e^{ax}V$, xV, where V is a function of x.					
	2.2 Cauchy's homogeneous linear differential equation and						
		Method of variation of parameters for second order.	1,2,3,4	07			
3	Title	0					
	3.1	Gamma functions: properties of gamma functions and					
		integrals					
		reducible to gamma functions.					
	3.2	Beta functions: properties, relation between Beta and Gamma					
	functions, integrals reducible to Beta functions, Duplication						
	formula.						
	3.3 Tracing of curves (Standard curves, Cardioide, Lemniscate,						
	Spheres, Ellipsoids, Cylinders, Cones, Tetrahedrons, planes)						
	3.4 Double Integration: definition and evaluation. Evaluate by						
		changing the order of integration and by changing to polar					
		form.	1.0.0.1	0.6			
4	Title	Probability	1,2,3,4	06			

4.1	Definition and basics of probability, conditional probability.	
4.2	Total Probability theorem and Bayes' theorem.	
4.3	Discrete and continuous random variable with probability	
	distribution of probability density function.	
4.4	Expectation, Variance, Moment generating function, Raw and central moments up to 4 th order.	

Tutorial:

Exp. No.	Tutorial Details			
1	Linear Differential Equations of First Order			
2	Linear Differential Equations of Higher Order			
3	3 Integral Calculus			
4	4 Probability			
5	Matlab / Scilab Practical			
6	Matlab / Scilab Practical			
7	Matlab / Scilab Practical			
8	Matlab / Scilab Practical			

Course Assessment:

Theory:

ISE-1: MCQ: 20 Marks ISE-2: MCQ: 20 Marks MSE: 90 minutes 30 Marks written examination based on 50% syllabus ESE: 90 minutes 30 Marks written examination based on the syllabus after MSE

Tutorial:

1. ISE-1 will be conducted for the first two tutorials. (20 marks).

2. ISE-2 will be conducted for the remaining two tutorials (20 marks) and four Matlab / Scilab practical (10 marks).

Recommended Books:

- [1] Dr B.S. Grewal, "Higher Engineering Mathematics", Khanna Publications, 4nd Edition.
- [2] H. K. Das, "Advanced Engineering Mathematics", S. Chand, 28th Edition.
- [3] Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition.
- [4] Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publications, 4th Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
25BSC11EC04	Engineering Chemistry	2		2	2		1	3
		Examination Scheme						
			ISE1	MSE	ISE2	ESE	Т	'otal
		Theory	20	30	20	30		100
		Lab	20		30			50

Pre-requisi	te Cou	rse Codes
	CO1	To evaluate the activity and selectivity of the catalyst
	CO2	To compare the different types renewable sources of energy
Course	CO3	To compare the different types of corrosion and control measures in industries.
Outcomes	CO4	To determine the quality of fuel and quantify the oxygen required for combustion of fuel.
	CO5	To evaluate the different types of fabrication methods, conducting polymers in various industrial fields

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Catalysis	1,2,4	5
		Basic concepts of catalysis (Homogeneous and Heterogeneous catalysis), Industrial applications of Catalysis-Oxidation- Hydroformylation, Reduction-Hardening of vegetable oils, Wilkinson's catalyst-Hydrogenation, Vaska's complex – Carbonylation, Commercial catalytic reactors (fixed bed, fluidized bed).		
2	Title	Energy resources (Solar, Hydel, Thermal etc.) Introduction to Energy Sources, Solar Energy Basics, Solar Thermal Systems, Wind Energy, Geothermal Energy, Energy from Ocean: Principle of tidal power, components of Tidal Power Plant (TPP), classification, advantages and limitations of TPP. Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, types of OTEC power generation, block diagram, applications, advantages and limitations.	1,2,4	5
3	Title	 Corrosion Definition, Mechanism of Corrosion – (I) Dry or Chemical Corrosion - i) Due to oxygen ii) Due to other gases. (II) Wet or Electrochemical corrosion - Mechanism i) Evolution of hydrogen type ii)Absorption of oxygen. Types of Corrosion - Galvanic cell corrosion, Concentration cell corrosion (differentialaeration principle), Factors affecting the rate of corrosion - (i) Nature of metal, (ii) Nature of corroding environment. Methods of corrosion control – (I) Material selection and proper designing, (II) Cathodic protection - i) Sacrificial anodic protection ii) Impressed current method, (III) Metallic coatings -only Cathodic coating (tinning) and anodic coatings (Galvanising) 	1,2,4	5

4	Title	Fuels and combustion	1,2,4	6
		Definition, classification, characteristics of a good fuel, units of heat		
		(no conversions). Calorific value - Definition, Gross or Higher calorific		
		value & Net or lower calorific value, Dulong's formula & numerical		
		for calculations of Gross and Net calorific values. Solid fuels -		
		Analysis of coal - Proximate and Ultimate Analysis - numerical		
		problems and significance. Combustion - Calculations for requirement		
		of only oxygen and air (by weight and by volume only) for given solid		
		& gaseous fuels.		
5	Title	Polymers	1,2,4	5
		Molecular weight (Number average and weight average), Numericals		
		problems on molecular weight, Effect of heat on the polymers (Glass		
		transition temperatures), Viscoelasticity, Conducting polymers,		
		Classification-Thermoplastic and Thermosetting polymers,		
		Compounding of plastic, Fabrication of plastic by Compression,		
		Injection, Transfer and Extrusion molding, Preparation, properties and		
		uses of PMMA, Butyl Rubber, PTFE and Kevlar		

Exp.	List of Experiments					
No.						
1	To determine the emf of a given cell potentiometrically.					
2	To determine the moisture and Ash content in the given fuel sample.					
3	To determine the percentage of volatile matter of a given sample by steam distillation method.					
4	To determine the COD value of a given sample.					
5	To determine the pH value of a given sample.					
6	To Remove hardness of water by ion-exchange method.					
7	To determine the cobalt ion concentration by colorimetry method.					
8	To determine the conductance of a given sample					

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: 90 minutes **30 Marks** written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Reflective journal analysis on the given problem statement for 10 marks

Recommended Books:

- 1. Engineering Chemistry Jain & Jain, Dhanpat Rai
- 2. Engineering Chemistry Dara & Dara, S Chand
- 3. Green Chemistry: A textbook V.K.Ahluwalia, Alpha Science International
- 4. A Text Book of Engineering Chemistry Shashi Chawla, DhanpatRai
- 5. Textbook of Qualitative Inorganic Analysis: A. I. Vogel

Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
		L	Т	Р	L	Γ ']	P	Total
	Programming Fundamentals	2		2	2		•	1	3
		Examination Scheme							
25ESC11EC03			ISE1	MSE	ISE 2	ES	E	Total	
		Theory	20	30	20	30)	100	
		Lab	20	-	30			50	

Pre-requisit	e Cour	se Codes					
	CO1 Explain the problem solving aspects using various programming para						
	CO2	Illustrate programming principles, decision making statements, looping					
		constructs.					
	CO3	Demonstrate modular programming using functions					
Course	CO4	Demonstrate the applications of derived data types such as arrays, pointers,					
Outcomes		strings and functions.					
	CO5	Apply various C++ constructs such as classes, objects, static members, access					
		specifiers					
	CO6	Apply the concept of inheritance to achieve code reusability and virtual					
		functions for run time polymorphism					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Problem Solving	1-2	2
	1.1	Steps for Problem Solving. Algorithm and FlowChart. Flow of		
		Control.		
	1.2	Imperative and Declarative Programming Paradigm.		
2		C Programming Fundamentals	1,2	4
	2.1	Variables, keywords, Data types, Operators: Arithmetic, Relational		
		and Logical, Assignment, Unary, Conditional, Bitwise, Expression,		
		Statements. Operator Precedence and Expression evaluation.		
	2.2	Branching Structures: if statement, if-else statement, multi-way		
		decision, switch statement, continue statement, break statement		
	2.3	Iterative Structures: while, do-while, for, nested loops, Jump control		
		statements.		
3		Arrays	1,2	5
	3.1	Declaration, Definition, accessing array elements, one-dimensional		
		array, two-dimensional array, array of characters, standard String		
		handling functions.		
4		Functions and Pointer	1,2	5
	4.1	Defining a Function, accessing a Function, Function Prototype,		
		Passing Arguments to a Function, call by value, call by reference,		
		Recursion		
	4.2	Declaration and Access of Pointer variables, Pointer arithmetic,		
		Pointer and Arrays.		
5		Fundamentals of Object Oriented Programming	3,4	04
	5.1	Declaration, Initialization, Array of Structure, pointer to structure.		

	5.2	Features of OOP, Classes and Objects, "this" pointer, Constructor		
		and Destructors, static members.		
	5.3	Inline functions, Passing parameters to functions, Functions with		
		default arguments		
	5.4	Access Specifiers, Friend Function and Friend Classes		
6		Inheritance and Polymorphism	3,4	06
	6.1	Types of Inheritance: Single Inheritance, Multiple Inheritance, Multi-		
		level Inheritance, Hierarchical Inheritance, Inheritance and		
		Constructors		
	6.2	Function Overloading, Operator Overloading.		
	6.3	Polymorphism, Virtual Functions, Pure Virtual Functions, Abstract		
		Classes.		
	•		Total	26

	Indicative Experiments
1	Programs using Basic Control Structures, branching and looping.
2	Programs for the use of 1-D, 2-D arrays and String.
3	Demonstrate the use of Functions with different types of parameter passing mechanisms.
4	Demonstrate the use of Pointers
5	Program on Structures and pointer to Structure.
6	Programs on basics of Object Oriented Programming Construct,
7	Program to demonstrate various categories Inheritance.
8	Program to apply kinds of Polymorphism.

Course Assessment:

Theory:

1. ISE-1: Quiz: 10 marks.

Assignments: 10 marks

2. ISE-2: Mini-Project: 20 marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabus

ESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Lab:

ISE-1 Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
 ISE-2

a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Practical Exam: 10 marks

Recommended Books:

- [1] Yashavant Kanetkar, "Let Us C", BPB publication, Sixteenth Edition
- [2] V. Rajaraman & Neeharika Adabala, "*Computer Programming in C*" PHI Learning, Eastern Economy Edition, Second Edition.
- [3] K.R. Venugopal, Rajkumar, T. Ravishankar, "*Mastering C++*", Tata McGraw Hill, Second Edition.
- [4] Herbert Schildt, "C++:Complete Reference", Tata McGraw Hill, Fourth Edition,

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
	Human Health Systems	L	Т	Р	L	Т	Р	Total
		1			1			1
25ESC11EC04		Examination Scheme						
25650116004			ISE1	MSE	ISE2	ESE	Total	
		Theory	20		30		50	
		Lab						

Pre-requisite Course Codes		rse Codes Basic Science
	CO1	Familiarize the students with the basic biological concepts and their engineering
Course		applications.
Outcomes	CO2	Understand bio-design principles to create novel devices and structures in the
Outcomes		future
	CO3	Develop the interdisciplinary vision of biological engineering

Module No.	Unit No.	Topics	Ref.	Hrs.		
		Significance of Biology in Engineering	2,3,5			
	1.1	Introduction, Aspects of Biology as an Independent scientific discipline				
1	1.2	Biological observations of the 18 th Century that led to major discoveries, Brownian motion, Origin of Thermodynamics concerning original observations of Robert Brown and Julius Mayor		2		
	1.3	Fundamental importance of observation in any scientific inquiry				
		Human Organ Systems and Bio Designs – 1	1,4			
	2.1	Brain as a CPU System, Architecture of the human brain as a CPU system- Comparison between Brains Computing System with Conventional Von Neumann Computing System				
	2.2	Central Nervous System (CNS) and Peripheral Nervous System (PNS)-2 types: Somatic and Autonomic, Signal Transmission				
		EEG (Electroencephalography- Applications, EEG Signals and Types of Brain Activity)				
2	2.3	Robotic Arms for Prosthetics- Robotic Arm Prosthetic Direct Control through Muscle Signals (myoelectric control), Robotic Arm Prosthetic by Brain-Machine Interfaces		4		
	2.4	Parkinson's disease Engineering Solutions for Parkinson's Disease				
	2.5	Artificial Brain				
	2.6	Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye)				
	and heart-related issues	Heart as a pump system (architecture, electrical signaling - ECG monitoring and heart-related issues, reasons for blockages of blood vessels, design of stents, pacemakers, defibrillators)				

		Human Organ Systems and Bio Designs – 2	1,4					
3	3.1	Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology – COPD(Chronic obstructive pulmonary disease), Ventilators, Heart- lung machine)		3				
	3.2	Kidney as a filtration system (architecture, mechanism of filtration, Chronic Kidney Disease, dialysis systems)		3				
	3.3	Muscular and Skeletal Systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis)						
		Nature-Bioinspired Materials And Mechanisms	6-7					
	4.1	Echolocation (ultrasonography, sonars),						
	4.2	Photosynthesis (photovoltaic cells, bionic leaf).						
	4.3	Lotus leaf effect (Super hydrophobic and self-cleaning surfaces),						
4	4.4 Plant burrs (Velcro)							
	4.5	Kingfisher beak (Bullet train)						
	4.6 Shark skin (Friction reducing swimsuits)							
	4.7	Human Blood substitutes - hemoglobin-based oxygen						
		carriers (HBOCs) and Perfluorocarbons (PFCs)						
		Trends in Bioengineering	8-11					
	5.1	Bioprinting techniques and materials,						
	5.2	3D printing of ear, bone, and skin. 3D printed foods,						
		Electrical tongue, and electrical nose in food science,						
F	5.3	DNA origami and Biocomputing,		2				
5	5.4	Bioimaging and Artificial Intelligence for disease diagnosis.		2				
	5.5	Self-healing Bio concrete (based on bacillus spores, calcium						
		lactate nutrients, and biomineralization processes)	1					
	5.6	Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, and Arsenic)						
		Total		13				

= 10 Marks

ISE Marks

- 1. ISE1-1 Quiz/ Assignment = 20 Marks
- 2. ISE2-1 Quiz/ Assignment
- **3.** Presentation / Poster Making = 20 Marks

Suggested Learning Resources:

- 1. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- 2. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A.,
- Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.
- 3. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 4. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- 5. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- 6. Biomimetics: Nature-Based Innovation, <u>Yoseph Bar-Cohen</u>, 1st edition, 2012, CRC Press.
- 7. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 8. Bioremediation of heavy metals: bacterial participation, by <u>C R Sunilkumar, N Geetha A C</u> <u>Udayashankar</u> Lambert Academic Publishing, 2019.
- 9. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- 10. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016
- 11. Blood Substitutes, Robert Winslow, Elsevier, 2005

Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/121106008
- 2. https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists
- 3. https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009
- 4. https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006
- 5. https://www.coursera.org/courses?query=biology
- 6. https://www.classcentral.com/subject/biology
- 7. https://www.futurelearn.com/courses/biology-basic-concepts

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
	Digital Electronics	L	Т	Р	L	Т	Р	Total	
		2		2	2		1	3	
25PCC11EC03		Examination Scheme							
25FCCIIEC05			ISE1	MSE	ISE2	ESE	Т	otal	
		Theory	20	30	20	30	1	.00	
		Lab	20		30	_		50	

Pre-requisite	e Cours	se Codes Binary number system and codes, binary arithmetic
	After	the successful completion students should be able to
Course	CO1	Compare TTL and CMOS families w.r.t. their characteristic parameters
Outcomes	CO2	Construct combinational circuits using given MSI devices.
	CO3	Apply the knowledge of flip-flops and MSI devices to design sequential circuits.
	CO4	Analyze the given sequential circuits to identify the state transitions and race
		conditions.
	CO5	Implement the given logic function using programmable logic devices.

Module	Unit	Topics	Ref	Hrs.				
No.	No.							
		Implementation of Logic functions						
	1.1	Logic gates, Implementation of functions using basic gates and						
1		using Universal gates	1,2, 3,4					
1	1.2	Formulating a logic function, Sum of Products (SOP), Product of	1,2,					
		Sums (POS), Minimization using Boolean Algebra, De Morgan's	3,4					
		Theorems, Minimization using Karnaugh map (upto 4 variables),						
		Quine-McClusky Technique						
		Logic Families						
	2.1	Characteristic parameters of logic families: Voltage and Current	1,2,	3				
		parameters, Fan in, Fan out, Noise margin, Power Dissipation,	3,4					
2		Propagation Delay						
	2.2	TTL NAND gate and its transfer characteristics, CMOS inverter						
		and transfer characteristics, comparison of TTL and CMOS logic						
		families						
		Combinational Circuit Design		5				
	3.1	Full adders, ripple carry adders, Carry Look ahead Adders, Binary						
3.		Subtractors	3,4					
5.	3.2	Multiplexer/ Demultiplexer, Encoders, Priority Encoders, Parity						
		Generators, Code Converters, comparator, ALU						
	3.3	Static and dynamic hazards in combinational circuits						
		Elements of Sequential Circuit						
	4.1	Storage elements: Latches and Flip-flops (S-R, J-K, D, T Flip-	1,2,	5				
4.		flop), Master Slave Flip-flop	3,4					
	4.2	Synchronous and Asynchronous counters, Shift registers and their	1,2,					
		applications	3,4					
5.		Analysis of Sequential circuits						
	5.1	Analysis of Moore and Mealy type Finite State Machines (FSM),	1,2,	5				

		State Reduction	3,4	
	5.2	Introduction to Asynchronous Sequential circuits, Essential	1,2,	
		hazards in asynchronous sequential circuits	3,4	
		Programmable devices		
6.		Structure of Programmable Logic Devices (PLDs), Function	1,2,	4
0.		implementation with PAL and PLAs,	3,4	
		Introduction to CPLD and FPGA		
			Total	26

Laboratory Experiments:

Sr. No.	Title of experiment	Module	Ref
1.	To implement the combinational logic for a given function using basic gates and Universal gates.	1	1,2
2.	To simulate a CMOS inverter and to plot the transfer characteristics (using SPICE)	2	1,2
3.	a. To verify the function of 8 bit binary adder IC7483b. To implement a BCD adder using IC7483	3	1,2
4.	a. To implement the function of 8 bit Multiplexer using IC74151 b. To implement a given 4 variable Boolean function using Multiplexer IC 74151	3	1,2
5.	To implement an 8 bit binary comparator using IC 7485	3	1,2
6.	a. To implement a Mod n asynchronous counter using flip-flopsb. To implement a Mod n counter using IC 74163	4	1,2
7.	Implementation of a combinational circuit using reconfigurable devices a. To write an HDL code for the parity generator and simulate verify the operation by simulation. b. To implement the HDL code on FPGA and verify the operation.	6	7,8
8.	Implementation of a sequential circuit using reconfigurable devices a. To write an HDL code for a 4 bit shift register and verify the operation by simulation. b. To implement the HDL code on FPGA and verify the operation.	6	7.8

Course Assessment:

Theory:

ISE-1: 20 marks

- 1. Quiz/ crossword -10 Marks
- 2. Open book test -10 marks

ISE-2: 20 Marks

- 1. Case study -10 Marks
- 2. Oral examination -10 marks

MSE: 90 minutes 30 Marks written examination based on 50% syllabusESE: 90 minutes 30 Marks written examination based on remaining syllabus after MSE

Laboratory Assessment:

40 Marks (08 experiments of 05 marks each) + 10 Marks (activity based) = 50 Marks

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Activity based: Testing and debugging activity for 10 marks

Recommended Books:

- [1] John F. Wakerly, "Digital Design Principles and Practice"- Pearson Publications, 4th edition
- [2] Morris Mano, Michael D. Ciletti, "Digital Design with introduction to Verilog HDL" Pearson, 5th edition
- [3] John M. Yarbrough, "Digital Logic Applications and Design" Thomson Publications
- [4] Stephen Brown and ZvonkoVranesic, "Fundamentals of digital logic design with Verilog design", McGraw Hill, 3rd Edition
- [5] Roth and Kinney, "Fundamentals of Logic Design", Cengage learning,7th edition
- [6] William I.Fletcher, "An Engineering Approach to Digital Design", PrenticeHall of India
- [7] J. Bhaskar, A Verilog HDL Primer, Third Edition, Star Galaxy Publishing
- [8] Sameer Palnitkar, "Verilog HDL: A guide to digital design and synthesis"

Online References:

https://archive.nptel.ac.in/content/storage2/courses/106108099//Digital%20Systems.pdf

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	P Total	
				4			2 2	
25PCC11EC04	Essential Psychomotor skills for engineers	Examination Scheme						
25FCCIIEC04			ISE1	MSE	ISE2	ESE	Total	
		Theory						
		Lab	50		50		100	

Pre-requisite	Course Co	odes						
After the succe	After the successful completion students should be able to:							
	CO1	Use skill of writing texts, labels, drawing perspective images and						
		creating 3D objects with technical drawing fundamentals.						
C	CO2	Build solid model of a given object using 3D modeling software.						
Course Outcomes	CO3	Identify and rectify computer hardware and networking related issues						
Outcomes	CO4	Perform soldering and de-soldering of discrete components on						
		Universal PCB						
	CO5	Install, configure and operate system admin servers.						

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Creative Art		8
	1.1	Art of writing Cursive, Bold, Italic, Block (3D) lettering, Creating Designer Name-Plates, Labels, Visiting Cards	[1]	4
	1.2	Development of Surface method.		4
2		Introduction to solid modeling		12
	2.1	Solid Modeling 3D Geometric modeling of an Engineering component, demonstrating modeling skills using commands like Extrude, Revolve, Sweep, Blend, Loft etc.	[2,3]	12
3		Computer hardware, networking and troubleshooting		10
	3.1	Computer assembly and troubleshooting	[4]	2
	3.2	IP address configuration, basic networking commands such as ping, netstat, traceroute, understand functionality of a network switch	[5,6]	2
	3.3	Implementation of LAN (2-3 computers) using network switch	[7]	2
	3.4	Identify and troubleshoot basic network problems using networking commands such as ping, netstat and traceroute	[8,9]	4
4		PCB making and soldering		12
	4.1	Soldering and de soldering practice on Universal PCB using		4
	4.2	Implementation of a 3V power supply circuit (using transistors and Zener diode) on Universal PCB	[12]	8

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

5		Types of servers and their usage		10
	5.1	Configuration and working of web server, FTP server	[13,14]	4
	5.2	Configuration and working of NFS server, SSH server	[15,16]	4
	5.3	Configuration and working of a wireless access point	[17]	2
			Total	52

Course Assessment:

Lab:

ISE:

- 1. ISE-1
 - a. Assignment on Module 1 for 20 marks
 - b. Assignment on Module 2 for 20 marks
 - c. Group activity on (network troubleshooting) Module 3 for 10 marks

2. ISE-2

- a. Quiz on Module 4 for 10 marks
- b. Assignment (PCB implementation) on Module 4 for 30 marks
- c. Group activity on Module 5 for 10 marks

Recommended References

- [1] https://mixeeva-design.ru/media/content/the-art-of-calligraphy.pdf
- [2] N.D. Bhatt, Machine Drawing, Chartor Publishing
- [3] Alexander Bordino, Autodesk Inventor 2023 cookbook, Packt publishing
- [4] https://bskillforum.bharatskills.gov.in/DashBoadUpload/Others-EBOOK-

28Oct2022131021.pdf

- [5] https://rsydigitalworld.com/15-useful-linux-networking-commands/
- [6] https://www.pearsonhighered.com/assets/samplechapter/0/7/8/9/0789732548.pdf
- [7] https://www.youtube.com/watch?v=CGeAauny2fc
- [8] <u>https://pcpl21.org/wp-content/uploads/2020/09/10-Troubleshooting-Tips-If-Your-Internet-Is-Connected-But-Not-Working.pdf</u>
- [9] https://www.youtube.com/watch?v=AimCNTzDIVo
- [10] Schwartz, Mel, ed. Soldering: Understanding the basics. ASM International, 2014.
- [11] Hamilton, Charles. A guide to printed circuit board design. Elsevier, 2013.
- [12] <u>https://www.circuits-diy.com/3v-1a-dc-supply-using-bd135-139-npn-transistor/</u>
- [13] https://www.digitalocean.com/community/tutorials/how-to-install-the-apache-web-server-

on-ubuntu-20-04

- [14] https://itslinuxfoss.com/how-to-install-an-ftp-server-on-ubuntu-22-04/
- [15] https://ubuntu.com/server/docs/service-nfs

- [16] https://www.cyberciti.biz/faq/ubuntu-linux-install-openssh-server/
- [17] https://www.youtube.com/watch?v=CEfUsyc2lwg

Course Code	Course Name	Teaching Scheme (Hrs/week)			C	Credits Assigned			
	Creative Coding in Python	L	Т	Р	L	Т	Р	Total	
				4			2	2	
25VSE11EC02		Examination Scheme							
			ISE1	MSE	ISE2	ESE	Т	otal	
		Lab	50		50		1	.00	

Pre-requisit	Pre-requisite Course						
Codes							
After the suc	cessful	ompletion students sh	ould be able to :				
	CO1	Demonstrate awarene	ess of skills of 21 st century engineer				
	CO2	Demonstrate basic co	Demonstrate basic concepts of python programming.				
Course	CO3	Identify, install and u	tilize python packages.				
Outcomes	CO4	Illustration of data an	alytics and data visualization using Python libraries				
Outcomes	CO5	Create GUI Applicat	ons using Python.				
	CO6	Demonstrate creativi	y while implementing solution for a given problem				
		using python					

Module	Unit	Topics
No.	No.	
1		21 st century skills
	1.1	Introduction and Importance of 21 st Century skills, case studies of creativity in
		engineering, Creator Tool PictoBlox, Github
2		Python Fundamentals:
	2.1	Basic Data Types: Letter Counter App, Right Triangle Solver App, Multiplication
		Exponent Table Program
	2.2	Lists: Grade Sorter App, Grocery List App, Basketball Roster Program
	2.3	Dictionaries: Thesaurus App, Code Breakers App
3		Decision Flow Control Statements
	3.1	For Loops: Binary Hexadecimal Conversion App, Grade Point Average Calculator
		Арр
	3.2	Conditionals: Voter Registration App, Rock, Paper, Scissors App
	3.3	While Loops: Guess the Word App, PowerBall Simulation App
4		Functions
	4.1	<i>Functions:</i> Head to Head Tic-Tac-Toe App, Bank Deposit and Withdrawal
		Program
	4.2	Classes: Casino Blackjack App
5		Graphics and GUI
	5.1	<i>Turtl</i> e - Hirst Painting
	5.2	<i>Tkinter</i> - Building a Password Manager GUI App.
6		Python in Data Sciences for Beginner
	6.1	NumPy, Pandas, Matplotlib: Data Analysis and visualization of any data set
		(Stock market/healthcare/weather/Agriculture)
7		Project Development using Python for various engineering domains like electronics, mechanical etc.

Course Assessment:

Lab:

ISE: 1. ISE-1

Experiments: 20 Marks Quiz: 10 Marks Design contest: 20 Marks

2. ISE-2

Experiments: 20 Marks Quiz: 10 Marks Mini Project: 20 Marks

Recommended Books:

- 1. Yashvant Kanetkar, "Let us Python: Python is Future, Embrace it fast", BPB Publications; 1st edition (8 July 2019).
- 2. Dusty Phillips, "Python 3 object-oriented Programming", Second Edition PACKT Publisher, August 2015.
- 3. John Grayson, "Python and Tkinter Programming", Manning Publications (1 March 1999).
- 4. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 5. Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox publication
- 6. Introduction to computing and problem solving using python, E Balagurusamy, McGraw Hill Education

Online Resources:

- 1. Python 3 Documentation: https://docs.python.org/3/
- 3. "The Python Tutorial", http://docs.python.org/release/3.0.1/tutorial/
- 4. http://spoken-tutorial.org
- 5. Python 3 Tkinter library Documentation: https://docs.python.org/3/library/tk.html
- 6. Numpy Documentation: https://numpy.org/doc/
- 7. Pandas Documentation: https://pandas.pydata.org/docs/
- 8. Matplotlib Documentation: https://matplotlib.org/3.2.1/contents.html
- 9. Scipy Documentation : https://www.scipy.org/docs.html
- 10. Machine Learning Algorithm Documentation: https://scikit-learn.org/stable/
- 11. https://nptel.ac.in/courses/106/106/106106182/
- 12. NPTEL course: "The Joy of Computing using Python"

Course Code	Course Name	Teaching Scheme (Hrs/week)Credits Assigned					ed	
		L	Т	Р	L	Т	Р	Total
		2			2			2
25IKS11EC01	Indian Knowledge		F	ation Sc	heme	heme		
	System		ISE1	MSE	ASE ISE2 ESE Tot			otal
		Theory	50		50	-	1	00
		Lab						

Pre-requisi	te Cou	rse Codes					
After the su	ccessfu	l completion students should be able to :					
	CO1	Enumerate the main characteristics of education system in Vedic and post					
	Vedic period to enrich the intellectual imagination						
	CO2	Review the ancient discovery and research in Indian number system and					
		ancient Indian mathematics					
Course	CO3	Review the contribution from Ancient Indian system to astronomy and					
Outcomes		metallurgy					
	CO4	Trace the significant developments in Indian engineering and technology in					
		Irrigation, painting, surgical techniques and shipbuilding					
CO5 Cultivate a deep sense of identity and pride in enriched scienti							
		heritage					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	What is Indian Knowledge System (IKS)? Why do we need it? Salient aspects of IKS.	1	2
	1.2	The Vedic Corpus: Introduction to Vedas, Sub-classification of Vedas, Messages in Vedas, Vedic Life: A Distinctive Features	1	3
2	2.1	Number systems in India, Measurements for time, distance, and weight, Bhūta-Samkhyā system, Katapayādi system, Pingala and the Binary system	1	4
	2.2	Unique aspects of Indian Mathematics, Indian Mathematicians and their Contributions, Algebra, Geometry and Trigonometry	1	4
3	3.1	Indian contributions in astronomy, The celestial coordinate system, Elements of the Indian calendar, Notion of years and months, Indian Astronomical Instruments	1	4
	3.2	Wootz Steel, Mining and ore extraction, Metals and Metalworking Technology, Iron and steel in India, Lost wax casting of idols and artefacts, Apparatuses used for extraction of metallic components	1	4
4	4.1	Irrigation systems and practices in South India, Dyes and painting technology, Surgical techniques, Shipbuilding	1	3
	4.2	Temple architecture in India, Perspective of Arthaśāstra on town planning.	1	2
	-	· · · ·	Total	26

Course Assessment:

ISE-1: Quiz: 20Marks (Two 10 marks each) Activity: Group Discussion on Indian Knowledge System: 10 Marks Activity: Creative Activity: 20 Marks

ISE-2: Quiz: 20 Marks (Two 10 marks each) Activity: Reflection discussion on Indian Knowledge System: 10 Marks Activity: Creative Activity: 20 Marks

Recommended Books:

- B Mahadevan, Vinayak Rajat Bhat, Nagendra Pavana R. N., "Introduction to Indian Knowledge System: Concepts and Applications" PHI, 2022
- [2] Kapil Kapoor, Avadhesh K. Singh, "Indian Knowledge Systems, Volume 1", Indian Institute of Advanced Study, 2005
- [3] R. P. Kulkarni, "Glimpses of India Engineering and Technology: Ancient and Medieval Period," Munshiram Manoharlal Publishers Pvt. Ltd., 2018

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
		2			2			2
	Introduction to Emerging	Examination Scheme						
25HMM11EC01			ISE1	MS	ISE2	ESE]	Total
	Technologies			Ε				
		Theory	50		50			100
		Lab						

Pre-requisi	te Cou	rse Codes
After the su	ccessfu	l completion students should be able to:
	CO1	Recognize the dynamic nature of emerging technologies and their evolving landscape.
	CO2	Demonstrate knowledge of the key characteristics and potential applications of emerging technologies.
Course	CO3	Identify the value, innovative solutions or applications for real-world challenges using emerging technologies
Outcomes	CO4	Analyze the implications of emerging technologies on society, business, and various industries
	CO5	Identify various emerging technologies relevant to his/her discipline for personal and professional growth
	CO6	Recognize the need for continuous learning to keep pace with technological advancements.

Module	Unit	Topics	Ref.	Hrs.
No.	No.	•		
1	1.1	Introduction to Industrial Revolution, Important Inventions	1,2	2
		during various Industrial Revolutions (IR).		
	1.2	Role of data, Enabling devices, Network and Human to Machine	1,2	1
		Interaction during IR		
2	2.1	Data Science: Overview of data science, Data Science Life Cycle,	1,2	3
		Cloud Computing with examples of available Clouds, Big Data,		
		Big data Life Cycle with Hadoop		
	2.2	Artificial Intelligence and Machine Learning: Philosophy of AI,	1,2	3
		Components of AI, Important terminologies, AI Problem		
		Solving, Real-World AI, Types of Machine Learning, Neural		
		Networks, Applications: Computer Vision, Robotics, NLP.		
		Societal Implications of AI.		
	2.3	Fundamentals of Blockchain, Blockchain applications and	1,2	3
		architecture. Introduction to Cyber Security, Cyber attacks and		
		defenses, Case studies.		
	2.4	Robotic Process Automation, RPA Tools and Applications		1
3	3.1	Internet of Things (IoT): Introduction, IoT Sensors, IoT Data	1,2	3
		acquisition & platforms, IoT Data Communication, IoT data		
		storage and Retrieval, IoT data analytics & visualization and IoT		
		Security, IoT Product Development Life Cycle, Industrial IoT,		

		Concept of Edge Computing. Case studies		
	3.2	Introduction to Immersive Technologies (AR, VR and MR), AR	3	2
		/VR systems with IOT, AI and Haptics, Tools needed to build AR		
		Apps, usecases, Human Centric UX design		
4	4.1	Semiconductor and Nanotechnology: Evolution of	4	3
		Semiconductor Industry, Trends and Innovations in		
		Semiconductor Technologies with respect to material, devices,		
		circuits, architecture and applications. Indian Semiconductor		
		Industry: present status, market trends, challenges, policy		
		initiatives by GoI		
	4.2	Digital Manufacturing, Principles of 3D Printing, Classification	1,6	3
		and material used in 3D printing, software tools and applications		
		to various fields.		
		Introduction to Robotics, Drones and Autonomous Systems.		
		Fundamentals of tools, software and hardware required to build		
		robot and autonomous systems. Applications and Case studies.		
	4.3	Other Trends in emerging technologies: 5G telecom networks and	6	2
		Electric Vehicles		
			Total	26

Course Assessment:

Theory:

ISE-1: 50 Marks

Rubric based assessment for activities conducted.

ISE-2: 50 Marks

Rubric based assessment for activities conducted.

Recommended Books:

- [1] Vasudha Tiwari. Sunil Kumar Chaudhary and Iqbal Ahmed Khan, "Emerging Technology For Engineers", Vayu Education of India, 1st Edition.
- [2] Chanagala Shankar, "Emerging Technologies", Bluerose Publishers Pvt. Ltd, 1st Edition
- [3] Chandradev Yadav, "The Evolution of Immersive Technologies: A Journey into the Extraordinary", 1st Edition
- [4] Website of India Semiconductor Mission (https://ism.gov.in/)
- [5] SWAYAM course on 'An Introduction to Artificial Intelligence'
- [6] Other relevant online resources to be used.