

CURRICULUM STRUCTURE PG: M.TECH.

COMPUTER ENGINEERING

REVISION: FRCRCE-1-24

Effective from Academic Year 2024-25

Board of Studies Approval: 08/03/2023 Academic Council Approval: 16/03/2023

DR. DEEPAK BHOIR Dean Academics

Dr. Sujata P. Deshmukh HOD (Computer)

Furthord

DR. SURENDRA RATHOD Principal

Preamble:

Greetings and congratulations to all the education partners Fr Conceicao Rodrigues College of Engineering for getting autonomous status to the college from the year 2024-25. University Grant Commission vide letter No. F. 2-10/2023(AC-Policy) dated 23rd Nov 2023 conferred the autonomous status to Fr. Conceicao Rodrigues College of Engineering, Fr. Agnel Ashram, Bandstand, Bandra (West), Mumbai 400050 affiliated to University of Mumbai for a period of 10 years from the academic year 2024-2025 to 2033-2034 as per clause 7.5 of the UGC (Conferment of Autonomous Status Upon Colleges and Measures for Maintenance of Standards in Autonomous Colleges) Regulations,2023. We look towards autonomy as a great opportunity to design and implement curriculum sensitive to needs of Learner, Indian Society and Industries. Government of Maharashtra has also directed Autonomous Colleges to revise their curriculum in line with National Education Policy (NEP) 2020 through Government Resolution dated 4th July 2023. We commit to ourselves to the effective implementation of UGC Regulations and NEP 2020 in its spirit.

Based on recent recommendations of the GR, we are pleased to offer our holistic curriculum for 2024-26, a "**H-Tree Model"** of Engineering Education. A unique "**H-Tree Model"** of Engineering Education Curriculum is carefully designed to systematically develop IQ (Intelligence Quotient), PQ (Physical Quotient), EQ (Emotional Quotient) and SQ (Spiritual Quotient) of a learner.

In alignment with the National Higher Education Qualifications Framework (NHEQF) guidelines set forth by the University Grants Commission, this Master of Technology (M. Tech.) program in Computer Engineering is meticulously crafted. This syllabus is designed to cultivate graduates who demonstrate a deep commitment to ethical practices, critical thinking, and holistic problem-solving.

The postgraduate programmes help students to extend their knowledge of their chosen subject and prepare them for higher research studies. The advanced knowledge and specialized skills they gain in the PG programme are crucial to sustaining the journey of a student from the acquirer of knowledge to the creator of knowledge.

Drawing inspiration from the NHEQF level descriptors, this two-year postgraduate program aims to equip students with the knowledge and skills necessary to address complex challenges in the field of Computer Engineering. PG framework is in sync with National Credit Framework (NCrF) for the creditization of all learning and assignment, accumulation, storage, transfer & redemption of credits, subject to assessment. By emphasizing the application of theoretical principles to practical scenarios, the curriculum fosters a deep understanding of physical principles, methodologies, and interdisciplinary approaches essential for solving real-world problems. The PG programme also includes vocational courses relevant to the chosen discipline.

Furthermore, the program places a strong emphasis on self-directed learning, encouraging students to continuously upgrade their knowledge and skills to adapt to the evolving demands of the industry. Through a blend of theoretical coursework, hands-on projects, and research opportunities, students will develop the ability to gather and interpret data, critically evaluate theories, and make informed decisions based on evidence.

Central to the ethos of this program is the cultivation of a strong sense of personal responsibility and accountability. Graduates of this M.Tech. program will be equipped to navigate the dynamic landscape of technological advancements, exhibit full ownership of their work outputs, and demonstrate leadership qualities essential for driving innovation and sustainable development.

Various steps are taken to transform teaching learning process to make learning a joyful experience for students. We believe that this curriculum will raise the bar of academic standards with the active involvement and cooperation from students, academic and administrative units.

Graduate Attributes of Master's Programme:

NHEQF has outlined the statement of learning achievements at a particular level on the basis of the following elements of descriptors:

- Knowledge and understanding
- General, technical, and professional skills required to perform and accomplish tasks
- Application of knowledge and skills
- Generic learning outcomes
- Constitutional, humanistic, ethical, and moral values
- Employability and job-ready skills, and entrepreneurship skills and capabilities/qualities and mindset

Credit requirement and Eligibility for the Master's Programme:

A 4-year Bachelor's degree (e.g. B.E., B.Tech. etc.) with a minimum of 160 credits for a 2-year/4-semester Master's programme (e.g. M.E., M. Tech. etc.) at level 7 of NHEQF.

		1 0 0	
	Two-Year PG P	rogramme (Generic and Profession	al) Minimum Credits
	Course Work	Research (Dissertation)	Total
1st Semester	20	-	40
2nd Semester	20	-	
3rd Semester	-	20	40
4th Semester	-	20	

Curriculum and Credit Distribution for M.Tech in Computer Engineering:

Main features of the master's curriculum framework:

- ✓ Opportunity for learners to choose the courses of their interest.
- Flexibility to switch to alternative modes of learning (offline, ODL, Online learning, and hybrid modes of learning).
- ✓ Mobility and flexibility as per the UGC (Establishment and Operation of Academic Bank of Credits in Higher Education) Regulations, 2021, and UGC Guidelines for Multiple Entry and Exit in Academic Programmes offered in Higher Education Institutions. These documents are to facilitate the implementation of the proposed "Curriculum and Credit Framework for Postgraduate Programmes."
- ✓ As emphasized by NEP 2020, the curriculum includes formative and continuous assessment rather than summative assessment.
- ✓ Another opportunity for students is the facility to pursue two academic programmes simultaneously. Fr. CRCE has no objection if a student wish to pursue two academic programmes simultaneously, one in full-time physical mode at Fr. CRCE and another in Open and Distance Learning (ODL)/Online mode with any HEI which is recognised by UGC/Statutory council/ Government of India for running such programs.
- The candidates having relevant experience / proficiency of atleast 4 years in experience in a trade or profession, will be exempted from the related ONE course in the curriculum. To complete the credit

requirements in lieu of this, the candidate need to complete the project given by the department for the equivalent credit.

- The candidates having relevant experience / proficiency of more than 4 years in a trade or profession will be exempted from the related TWO courses in the curriculum. To complete the credit requirements in lieu of this, the candidate need to complete the project given by the department for the equivalent credit.
- The candidate has to prove the relevant experience / proficiency through documents endorsed by the concerned authorities.
- Exit Point: For the PG programme, there shall only be one exit point for those who join two-year PG programme. Students who exit at the end of 1st year shall be awarded a Postgraduate Diploma.

Nome	enclature of the courses in the curriculum				
Abbreviation	Title				
PSBC	Program Specific Bridge Course				
PCC	Program Core Courses				
PEC	Program Elective Courses				
OE	Open Elective				
CCL	Core Course Lab				
SBL	Skill Based Lab				
MP	Major Project				

Curriculum Structure for PG Programs at Fr CRCE w.e.f. A.Y. 2024-25

Credit Specification:

- Theory: 1 credit = 13 to 15 hrs of teaching
- Lab: 1 Credit = 26 to 30 hrs of lab work

Seminar/Group Discussion: 1 Credit=13 to 15 hrs of participation

SEMESTERWISE CURRICULUM STRUCTURE FIRST YEAR M.TECH. COMPUTER ENGINEERING Program:

				SEM-I									
Course Code	ourse Code Course		Course Name	urro Namo			Examination Marks					Credits	
course coue	Vertical	Sub- Vertical	Course Name		Contact Hours	ISE 1	MS E	ISE 1	ESE	Total	Points	Tota	
PSBC21CE01	PCPSBC	PSBC	*Bridge Course	TH	2	20	30	20	30	100	2	3	
				TU/PR	2	20		30	-	50	1		
PCC21CE01	PCPEC	PCC	Database Management	TH	2	20	30	20	30	100	2	3	
			Systems in Modern Era	PR	2	20		30	-	50	1		
PCC21CE02	PCPEC	PCC	Advance Algorithms and	TH	2	20	30	20	30	100	2	3	
			Complexity	PR	2	20		30	-	50	1		
PEC21CE01X	PCPEC	PEC	Program Elective 1	TH	2	20	30	20	30	100	2	3	
				PR	2	20		30	-	50	1		
PEC21CE02X	PCPEC	PEC	Program Elective 2	TH	2	20	30	20	30	100	2	3	
				PR	2	20		30	-	50	1		
OE211X	OE	OE	Open Elective 1	TH	2	20	30	20	30	100	2	3	
				TU	1	20		30	-	50	1		
CCL21CE01	CCLSBL	CCL	Program Lab-I Data Science	PR	2	25		25		50	1	1	
SBL21CE01	CCLSBL	SBL	Full Stack Development	PR	2	25		25		50	1	1	
Total	1	-	1	1	TH:TU:PR 12:1:14=27	290	180	350	180	1000	20	20	

*Bridge Course- Students who have completed graduation in Computer Engineering will have bridge course in Mathematics for research and for other branch students will have bridge course covering Fundamentals of computer Engineering.

Course Code	Program Elective 1 (PEC21CE01X)	Course Code	Program Elective 2 (PEC21CE02X)
PEC21CE011	High Performance Computing	PEC21CE021	Geographical Information Systems
PEC21CE012	Quantum Computing	PEC21CE022	Agile Methodologies in Software Engineering
PEC21CE013	Embedded Systems and RTOS	PEC21CE023	Block chain Technology & DeFi

Course Code	Open Elective 1 (OE211X)
OE2111	Constitution of India and Professional Ethics
OE2112	Digital Business Management
OE2113	Design of Experiments

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

				SEM-II								
Course Code	Course	Sub-	Course Name		Contact		E	xaminati	ion Marks		Credits	
	Vertical	Vertical			Hours	ISE 1	MSE	ISE2	ESE	Total	Points	Total
PSBC21CE02	PCPSBC	PSBC	Research Methodology and Intellectual property	ТН	2	20	30	20	30	100	2	3
PSBC21CE03			Effective Technical Communication	ΤU	2	10	15	10	15	50	1	
PCC21CE03	PCPEC	PCC	Operating Systems in	ТН	2	20	30	20	30	100	2	3
			Modern Era	PR	2	20		30	-	50	1	
PCC21CE04	PCPEC	PCC	Emerging Paradigms in	ТН	2	20	30	20	30	100	2	3
			Communication	PR	2	20		30	-	50	1	
PEC21CE03X	PCPEC	PEC	Program Elective3	ΤH	2	20	30	20	30	100	2	3
				PR	2	20		30	-	50	1	
PEC21CE04X	PCPEC	PEC	Program Elective4	ΤH	2	20	30	20	30	100	2	3
			Ū	PR	2	20		30	-	50	1	
OE212X	OE	OE	Open Elective 2	ΤH	2	20	30	20	30	100	2	3
				ΤU	1	20		30	-	50	1	
CCL21CE02	CCLSBL	CCL	Program Lab-II- Advanced Cloud Computing	PR	2	25		25		50	2	1
SBL21CE02	CCLSBL	SBL	Skill Based Lab-II- Cyber Forensic	PR	2	25		25		50	2	1
	1	Total	1		TH:TU:PR 12:1:14=27	290	180	35 0	180	1000	20	20

Course Code	Program Elective 3 (PEC21CE03X)	Course Code	Program Elective 4 (PEC21CE04X)
PEC21CE031	Optimization in Machine Learning	PEC21CE041	Data Architecture and Management
PEC21CE032	Generative Al	PEC21CE042	Bioinformatics
PEC21CE033	Deep Learning with NLP	PEC21CE043	Industrial IOT

Course Code	Open Elective 2 (OE212X)
OE2121	Project Management
OE2122	Finance Management
OE2123	Environmental Management

Note 1: Skill Based Lab- I and II are focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

SEMESTERWISE CURRICULUM STRUCTURE SECOND YEAR M.TECH. COMPUTER ENGINEERING Program:

			Contact	Examina	ation Ma	Credits				
Course Code	Course Name		Hours	ISE1	MSE	ISE2	ESE	Total	Points	Total
MP22CE01	Major Project: Dissertation -I	PR	28	20		30	50	100	14	14
SLC22CE01	Online Credit Course-1	TH		-	-	-	-	-	3	3
SLC22CE02	Online Credit Course-2	TH		-	-	-		-	3	3
TH:TU:PR 12:0:28=40			28	20		30	50	100	20	20

Note 1: It is mandatory to complete the Online Credit Courses (OCC) available on NPTEL / Swayam /MOOC or similar platform approved by UoM. These two courses shall be completed in any semester I or II or III, but not later end of the Semester III. Institute shall make a provision that credits earned with OCC- I and OCC-II shall be accounted in the third semester grade-sheet with actual names of courses. The learner shall be allowed to take up these courses from his or her institute or organisation/ industry where his / her major project is carried out. The students shall complete the courses and shall qualify the exam conducted by the respective authorities/ instructor from the platform. The fees for any such courses and the corresponding examination shall be borne by the learner.

Semester long industrial internship with Major Project will be permitted

Online Credit Course – I

The learner shall opt for the course in the domain of area of M. Tech dissertation. The opted course shall be of 3 credits of equivalent number of weeks.

Online Credit Course –II

The learner shall opt for the course recommended by Faculty Advisor/ Project Supervisor from the institute. The opted course shall be of 3 credits of equivalent number of weeks.

Course Code			Combo at Ularea	Examination Marks						dits
Course Code	Course Name		Contact Hours	ISE1	MSE	ISE2	ESE	Total	Point s	Total
MP22ME02	Major Project: Dissertation -II	PR	40	50		50	100	200	20	20
TH:TU:PR 0:0:40=40			40	50		50	100	200	20	20

Note 2: The Dissertation -II submission shall not be permitted till the learner completes all the requirements M.Tech. course.

Course Code		-	Teaching Scheme (Hrs/week)		Credits Assigned			d	
	Bridge Course-	L	Т	Р	L	Т	Р	Total	
	Mathematics for Research	2	1	0	2	1	0	3	
				Exam	inatio	n Scheme	Scheme		
PSBC21CE01			ISE1	MSE	ISE2	ESE		Total	
PSDCZICEUI		Theory	20	30	20	100 (30%	100		
						weightage)			
		Tutorial	20		30		50		

Pre-requisite	Probal	pility distributions: Bernoulli, Binomial, Poisson, and Normal
Course Outcomes	CO1	Classify stochastic processes in a given time domain as per their properties.
	CO2	Execute a sequence of events in a system with the help of Markov chains.
	CO3	Operate modern statistical techniques of estimation of parameters associated with different real life data sets.
	CO4	Interpret the results of regression and ANOVA models.

Theory:

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Title	Stochastic Processes	1,2,3,4	06
	1.1	Introduction and classification of stochastic processes		02
	1.2	Bernoulli process, Poison process, Renewal processes		04
2	Title	Markov Chains	1,2,3,4	07
	2.1	Discrete-time Markov chains: computation of n-step transition probabilities, state classification and limiting probabilities, distribution of time between time changes, M/G/1 queuing system		03
	2.2	Continuous-Time Markov chains: Birth-Death process (M/M/1 and M/M/m queues), non-birth-death processes, Petri nets		04
3	Title	Statistical Inference	1,2,3,4	07
	3.1	Parameter Estimation – sampling from normal distribution, exponential distribution		02
	3.2	Estimation related to Markov chains		02
	3.3	Hypothesis testing		03
4	Title	Regression and Analysis of Variance	1,2,3,4	06
	4.1	Least square curve fitting		02
	4.2	Linear and non-linear regression		02
	4.3	Analysis of variance		02
			Tota	26

Tutorial/Practical:

Exp. No.	Tutorial/ Practical Details						
1	Introduction and classification of stochastic processes						
2	Bernoulli process, Poison process, Renewal processes						
3	Discrete-time Markov chains						
4	Continuous-time Markov chains						
5	Estimation (parameter and Markov chain related)						
6	Hypothesis testing						
7	Curve fitting and regression						
8	Analysis of variance						

Course Assessment:

Theory:

ISE-1: MCQ: 20 Marks

ISE-2: MCQ: 20 Marks

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus Tutorial:

1. ISE-1 will be conducted for three tutorials. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 will be conducted for five tutorials. Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:

- [1] Ronald Walpole, Raymond Myers, Sharon Myers, and Keying Ye, "*Probability and Statistics for Engineers and Scientists*", Pearson Publications, 9th Edition.
- [2] Kishor Trivedi, "Probability and Statistics with Reliability, Queuing and Computer Science Applications", John Wiley and Sons (New York), 2nd Edition
- [3] V. Sundarapandian, "Probability, Statistics and Queuing Theory", PHI Learning Private Limited, 1st Edition
- [4] Randolph Nelson, "Probability, Stochastic Processes and Queuing Theory", Springer, 1st Edition

Course Code			Course Nai		Teaching Scheme (Hrs/week)			Credits Assigned				
_					L	Т	Р	L	Т		Ρ	Total
Bridge Cour				2		2	2			1	3	
			Fundamenta	als of				ation So	r			
PSB	C21CE01		compute			ISE1	MSE	ISE2	ES			otal
			Engineeri	ng	Theory	20	30	20	100(30			100
									weigh	tage)		
					Lab	20		30				50
	Pre-requi	isite		Funda	mentals of	comput	er engine	ering				
				CO1	Describe da	ata stru	cture for r	eal worl	d applic	ation		
				CO2	Elaborate k	basic cor	ncepts of I	RDMS				
				CO3	Explain ope	erating s	system cor	ncepts a	nd prind	ciples.		
				CO4	Characteriz	e the di	istinction l	betweer	n variou	s cloud		
	Cou	rse Out	tcomes		models and	d service	es					
				CO5	State work	-	fferent ne	tworkin	g device	es base	d or	ו ו
					network la	-						
				CO6	Apply data	-		ine lear	ning cor	cepts	to	
					solve real world problems.							
	Module	Unit	Topics							Ref.	Hr	s.
	No.	No.										
	1	1.1			ata structure	-				1,2		4
					, Data struct			- ·				
					neta notation. Solving recurrence equations, Generating function Techniques							
						function	Techniqu	les		2.4	-	
	2	2.1	Transaction							3,4	5	
					action man	•			• •			
				Transaction state, Implementation of Atomicity and Durability,								
				Concurrent Executions, Serializability, Recoverability, Concurrency control: Lock-Based Protocols, Timestamp-Based								
				•	tion-Based			•				
					micity, Log			'	,			
				concurrent transactions, ARIES(Algorithm for Recovery and Isolation Exploiting Semantics), which support partial rollbacks								
							• • •					
			of transactions, fine granularity(e.g. Record)locking and recovery using write-ahead logging(WAL)									
	3	3.1	-		erating Syst		/			5	4	
	2			-	jectives of a		ating syst	em. Hi	storical			
				-	evolution of	-						
					s (e.g., ba	-		=	-			
			distributed	-		н ⁻	5/		0/	1		

Benefits and challenges to cloud architecture, cloud delivery models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,855.1Overview of Internet Protocol (IP): Netwer of Internet Protocol (IP):84Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)966.1Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9					
44.1Introduction to cloud computing: Benefits and challenges to cloud architecture, cloud delivery models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,855.1Overview of Internet Protocol (IP): web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)866.1Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9		3.2			
44.1Introduction to cloud computing: Benefits and challenges to cloud architecture, cloud delivery models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,8455.1Overview of Internet Protocol (IP): Net, token bucket); IPv4, CIDR (Classless Interdomain routing)8466.1Data Mining and Machine Learning: Applications, Motivation, nouting knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			Process states and state transitions, Process scheduling		
4 4.1 Introduction to cloud computing: Benefits and challenges to cloud architecture, cloud delivery models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees, 8 4 5 5.1 Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing) 9 5 6 6.1 Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues. 9			algorithms (e.g., FCFS, SJF, Round Robin), Inter process		
Benefits and challenges to cloud architecture, cloud delivery models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,855.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)966.1Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			communication and synchronization mechanisms		
models- SaaS, PaaS, LaaS. Cloud deployment models- Public Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking 	4	4.1	Introduction to cloud computing:	6,7	4
Cloud, Private Cloud, Community Cloud and Hybrid Cloud, Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)966.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			Benefits and challenges to cloud architecture, cloud delivery		
Service level agreements in clouds, Case studies on cloud services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)966.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			models- SaaS, PaaS, LaaS. Cloud deployment models- Public		
services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)866.1Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			Cloud, Private Cloud, Community Cloud and Hybrid Cloud,		
services, Cloud Adoption Challenges. The Handshaking Problem, Connectivity and Paths, Matrix representation of graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)866.1Data Mining and Machine Learning: Applications, Motivation, Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			Service level agreements in clouds, Case studies on cloud		
graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)866.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			_		
graphs, Konigsberg Bridge problem, Eulerian and Hamiltonian graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)866.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			Problem, Connectivity and Paths, Matrix representation of		
graphs, Spanning trees and Minimal spanning trees,55.1Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)8466.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.95					
5 5.1 Overview of Internet Protocol (IP): Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing) 8 4 6 6.1 Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues. 9					
Routing protocols (distance vector, link state packet routing); protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)66.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9	5	5.1		8	4
protocols - TCP, UDP, RPC; Application protocols for email, ftp, web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain 					
 web, DNS. Connection establishment, flow control, congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing) 6 6.1 Data Mining and Machine Learning: Applications, Motivation, 9 Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues. 			protocols - TCP, UDP, RPC; Application protocols for email, ftp,		
bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)66.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			web, DNS. Connection establishment, flow control, congestion		
bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)66.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9			control concepts and mechanisms (choke packets, leaky		
66.1Data Mining and Machine Learning: Applications, Motivation, Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.9					
Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.					
Data mining knowledge discovery process, kinds of data, data mining techniques, issues in data mining, Introduction to Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.	6	6.1		9	5
Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.			Data mining knowledge discovery process, kinds of data, data		
Machine learning: Applications of ML, Design perspective and issues in ML, Supervised, Unsupervised learning with applications and issues.			mining techniques, issues in data mining, Introduction to		
issues in ML, Supervised, Unsupervised learning with applications and issues.					
applications and issues.					
Total 26				Total	26

Module No.	Sr.no	Suggested List of experiments						
1	1	Experiments on Data structure: Experiment based on sorting and searching using different data structure						
	2	Perform Create, Insert, Delete and traverse operations on linked list						
2	3	Experiments on DBMS: CRUD operations on Database						
	4	Simulate ARIES recovery system						
3	5	Experiments on OS: Explore process scheduling algorithms (e.g., FCFS, Round						
		Robin) and compare their performance						
	6	Implement a simple process creation and termination mechanism.						
4	7	Experiments on Cloud Computing: Analyze the Cloud computing setup with its vulnerabilities and applications using different architectures						
	8	Apply and design suitable Virtualization concept, Cloud Resource Management and design scheduling algorithms.						

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

5	9	Experiment on Computer Network: Study different types of networking devices
	10	Experiment on ML: Build a system for natural language understanding using techniques such as semantic parsing or semantic role labeling

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein "Introduction to Algorithms", The MIT Press
- [2] Robert Lafore "Data Structures and Algorithms in Java", Sams Publishing.
- [3] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan" Database System Concepts", McGraw-Hill Education
- [4] Ramez Elmasri and Shamkant B. Navathe" *Fundamentals of Database Systems*", Pearson Education
- [5] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne" Operating System Concepts", Wiley
- [6] Rajkumar Buyya, Christian Vecchiola, S.Thamarai Selvi "Mastering Cloud Computing Foundations and Applications"
- [7] Thomas Erl, Zaigham Mahmood, and Ricardo Puttini "Cloud Computing Concepts, Technology & Architecture"
- [8] James F. Kurose and Keith W. Ross" Computer Networking: A Top-Down Approach", Pearson
- [9] Christopher M. Bishop"Pattern Reccognition and Machine Learning", Springer

Course Code		Course Name Teaching Scheme Credits Ass (Hrs/week)					signed	signed		
				L	Т	Р	L	Т	Р	Tota
				2		2	2		1	3
		Database			1	-	nation S	cheme		
PCC21CE0		Manageme			ISE1	MSE	ISE2	ESE	1	「otal
	S	ystems in Mo	dern	Theory	20	30	20	100 (30%	,	100
		Era		<u> </u>				weightage)	
				Lab	20		30			50
Pre-requi	isite		DBM	S, Object or	iented p	orogram	ming			
			CO1	Explain ste	eps invo	olved in	develop	oment of an	enterp	rise
				data ware	housing	g solutic	on.			
			CO2	Demonstr	ate the	fundam	nentals	of data stora	age and	
				query pro	cessing					
Cou	rse Ou	itcomes	CO3	Develop a	pplicati	ons invo	olving d	istributed da	atabase	es
			CO4					techniques t	to desig	gn
				database	for real	life scer	narios			
			CO5	Use advar	iced XIV	1L queri	es on d	atabase		
CO6 Manipulate data using MongoDB / No SQL comm						ommar	nds			
Module	Unit	Topics							Ref.	Hrs.
No.	No.									
1		Data wareh	ousing	Design					5,6,	4
									7	
	1.1			d of Data w						
			-	ponents, Bu	-					
				ecture, Dim		-		chema,		
				a, Data Extra		•	•			
				ools, Online	•	cal Proc	essing (OLAP) and		
				Data Analys	sis.					<u> </u>
2	<u> </u>	Distributed							1,2	4
	2.1			ase concept						
				ts relationsh	•					
		-		d Heteroger						
		-		ributed Tra		•				
		-	•	em (DDBMS						
		. .	•	wn, bottom	1 7 .	•				
				fragments.				rview,		
		O		\mathbf{n} and $(\mathbf{o}\mathbf{n}\mathbf{c})$	urrancy	CONTRO	1		1	1
		Query Opti			-	Contro			10	4
3	3.1	Data interop	perabilit	y – XML and	JSON			na, Querying	10	4

XML database Application Basic JSON syntax, (Java Script Object Notation),JSON data types, Stringifying and parsing the JSON for sending & receiving, JSON Object retrieval using key-value pair and JQuery, XML Vs JSON 4 Object oriented database 8 5 4.1 Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: DDMG Model, Object Offinition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules. 1,2 4 5 NoSQL Distribution Model 1,2 4 5.1 NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties 3,9 4 6 NoSQL using MongoDB lintroduction to MongoDB Shell, Running the MongoDB shell, MangoDB client, Basic operations, with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB upg find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed envirommet: Concepts of replication and horizontal scaling	I				
Basic JSON syntax, (Java Script Object Notation), JSON data types, Stringifying and parsing the JSON for sending & receiving, JSON 4 Object retrieval using key-value pair and JQuery, XML Vs JSON 4 Object oriented database 8 5 Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules. 5 NoSQL Distribution Model 1,2 4 5.1 NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties 3,9 4 6.1 NoSQL using MongoDB InvogoDB Shell, Running the MongoDB shell, MongoDB Client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through shar			&SAX Interfaces X pointer, Xlink, XHTML, SOAP, WSDL, UDDI,		
Stringifying and parsing the JSON for sending & receiving, JSON Object retrieval using key-value pair and JQuery, XML Vs JSON 4 Object oriented database 8 5 4.1 Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object Structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules. 5 NoSQL Distribution Model 1,2 4 5.1 NoSQL Distribution Model 1,2 4 NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties 6 NoSQL using MongoDB 3,9 4 MongoDB shell, MongoDB c					
Object retrieval using key-value pair and JQuery, XML Vs JSON 8 4 Object oriented database 8 5 4.1 Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules. 1,2 4 5 NoSQL Distribution Model 1,2 4 5.1 NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Colum Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties 3,9 4 6 NoSQL Using MongoDB 3,9 4 MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB 2 2					
4 Object oriented database 8 5 4.1 Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules. 1,2 4 5 NoSQL Distribution Model 1,2 4 MoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties 3,9 4 6 NoSQL using MongoDB 3,9 4 MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB 2 2 7.1 Temporal database: Introduction, features, Transactions, consistency, Availability, Querying, Case Stud					
4.1Notion of Abstract Data Type, Object Oriented Systems, Object Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB shell, MongoDB Distributed data store, Saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, data types, models, operators and guerying, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and gueries22					
Oriented Database: Object Identity, Object structure, Type Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: DDMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB: NogDB shell, MongoDB Shell, Running the MongoDB shell, MongoDB (Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB Distributed databases: corrends in Advance databases227Trends in Advance databases: Graph Database: Introduction, savanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227.1Temporal database: Introduction, features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22	4			8	5
Constructors, Encapsulation of Operations, Methods, Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.SNoSQL Distribution Model1,24SNoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID VS BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB shell, MongoDB Shell, Running the MongoDB shell, MongoDB Shell, MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance database: Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22		4.1	Notion of Abstract Data Type, Object Oriented Systems, Object		
Persistence, Type and Class Hierarchies, Inheritance, Complex Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.SNoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB shell, MongoDB Shell, Running the MongoDB shell, MongoDB Shell, Running the MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, operators and queries22			Oriented Database: Object Identity, Object structure, Type		
Objects, Object-oriented DBMS, Languages and Design: ODMG Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.SNoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22			Constructors, Encapsulation of Operations, Methods,		
Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.SNoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB27Trends in Advance databases227.1Temporal database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries2			Persistence, Type and Class Hierarchies, Inheritance, Complex		
Model, Object Definition Languages (ODL), Object Query Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.SNoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB27Trends in Advance databases227.1Temporal database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries2			Objects, Object-oriented DBMS, Languages and Design: ODMG		
Languages (OQL). Object Oriented DB Design. Expert Databases: Use of Rules of Deduction in Databases, Recursive Rules.5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,96NoSQL using MongoDB3,96.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB7Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22					
Databases: Use of Rules of Deduction in Databases, Recursive Rules.Inc.5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID VS BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB3,946.1NoSQL using MongoDB Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22					
Rules.Rules.5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22					
5NoSQL Distribution Model1,245.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB Client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22					
5.1NoSQL database concepts: NoSQL data modeling, Benefits of NoSQL, comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties6NoSQL using MongoDB3,96.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB7Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22	5			1.2	4
comparison between SQL and NoSQL database system, Replication and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties6NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents, Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22	-	5.1		_,_	-
and sharding, Distribution Models Consistency in distributed data, CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties6NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22		5.1			
CAP theorem, Notion of ACID Vs BASE, handling Transactions, consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties6NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries4					
consistency and eventual consistency, Types of NoSQL databases: Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries4					
Key-value data store, Document database and Column Family Data store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties6NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22					
store, Comparison of NoSQL databases w.r.t CAP theorem and ACID properties3,946NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries4					
6NoSQL using MongoDB3,946.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries3,94					
6.1NoSQL using MongoDB: Introduction to MongoDB Shell, Running the MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB7Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries2			properties		
MongoDB shell, MongoDB client, Basic operations with MongoDB shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries4	6		NoSQL using MongoDB	3,9	4
shell, Basic Data Types, Arrays, Embedded Documents , Querying MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries1		6.1	NoSQL using MongoDB: Introduction to MongoDB Shell, Running the		
MongoDB using find() functions, advanced queries using logical operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries4			MongoDB shell, MongoDB client, Basic operations with MongoDB		
operators and sorting, simple aggregate functions, saving and updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB227Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries1			shell, Basic Data Types, Arrays, Embedded Documents , Querying		
updating document. MongoDB Distributed environment: Concepts of replication and horizontal scaling through sharding in MongoDB2TTrends in Advance databases22T.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22			MongoDB using find() functions, advanced queries using logical		
of replication and horizontal scaling through sharding in MongoDB27Trends in Advance databases27.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries1			operators and sorting, simple aggregate functions, saving and		
7Trends in Advance databases227.1Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries22			updating document. MongoDB Distributed environment: Concepts		
7.1 Temporal database: Concepts, time representation, time dimension, incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries			of replication and horizontal scaling through sharding in MongoDB		
incorporating time in relational databases. Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries	7		Trends in Advance databases	2	2
Graph Database: Introduction, Features, Transactions, consistency, Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries		7.1	Temporal database: Concepts, time representation, time dimension,		
Availability, Querying, Case Study Neo4J Spatial database: Introduction, data types, models, operators and queries					
Spatial database: Introduction, data types, models, operators and queries					
queries					
Total 2			queries		
				Total	26

Sr.no	Suggested List of experiments
1	Design data warehouse for any application
2	Perform OLAP Operations using Tool

3	Design Distributed database for any real-life example
4	Write XML query
5	Develop some XML application
6	Perform CRUD operations on NoSQL database queries
7	Write MongoDB queries
8	Perform ETL operations on Tableau database
	Mini project/presentation/Article discussion/ Research paper implementation

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Activity: Article Discussion, Quiz and Assignments

MSE: Two hours 30 Marks written examination based on 50% syllabus **ESE:** Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.b. Mini project//presentation/Article discussion/ Research paper implementation for 10 marks

Recommended Books:

- 1. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Addison-Wesley, 2003
- 2. Korth, Siberchatz, Sudarshan, "Database System Concepts", 6 thEdition, McGraw Hill , 2010
- 3. Niall O'Higgins, "Mongo D B and Python", O'reilly, 2011.
- 4. Distributed Database; Principles & Systems By Publications, Stefano Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions (1984)
- 5. George M. Marakas, "Modern Data Warehousing, Mining and Visualization: Core Concepts", Pearson Education
- 6. Alex Berson & Stephen J. Smith, "Data Warehousing, Data Mining & OLAP", Tata McGraw-Hill
- 7. Sam Anahory, Dennis Murray ,"Data Warehousing in the real World", Pearson Education Chapter and Section-W
- 8. Won Kim, "Introduction to Object-Oriented Databases", MIT press
- 9. PramodSadalge, Martin Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Addison Wesely/ Pearson
- 10. Jeff Friesen , Java XML and JSON, Second Edition, 2019, après Inc.

Online Recourses:

- 1. https://cassandra.apache.org
- 2. https://www.mongodb.com
- 3. https://riak.com
- 4. https://neo4j.com
- 5. https://martinfowler.com/articles/nosql-intro-original.pdf
- 6. https://www.w3schools.com/js/js_jquery_elements.asp

Course Code	Course Name		ing Sch s/week		Credits Assigned				
Code		L	Т	Р	L	т	Р	Total	
		2		2	2		1	3	
		Examination Scheme							
PCC21CE02	Advance Algorithms and		ISE1	MSE	ISE2	E	SE	Total	
PCCZICEUZ	Complexity	Theory	20	30	20	100	(30%	100	
						weigl	ntage)		
		Lab	20		30	-	-	50	

Pre-requisiteData Structure and Analysis of Algorithm			
	CO1	Apply different analysis techniques to compute complexity. (Apply) (Asymptotic, Amortized, Probability and Randomization)	
Course Outcomes	CO2	Describe appropriate data structure and design techniques for different problems. (Apply)	
Outcomes	CO3	Apply appropriate algorithms to be applied for the various application like geometric modelling, robotics, network flow etc. (Apply)	
	CO4	Design approximation algorithms to solve NP-Complete Problems (Design)	

Module	Unit	Topics	Ref.	Hrs
No.	No.			
1	1.1	Fundamental of Algorithms:	1,2	2
		Asymptotic Notations, Properties of Asymptotic Comparisons,		
		Theorem related to Asymptotic Notations, Proving technique		
		(contradiction, mathematical induction), Complexity of Recursive		
		Algorithms		
2	2.1	Analysis Techniques:	1,2	2
		Amortized Analysis - Aggregate analysis, accounting method,		
		Potential method, Dynamic tables		
		Probabilistic Analysis and Randomized Algorithms - The hiring		
		problem, Indicator random variables.		
3	3.1	Advanced Data Structures:	1,2	8
		Неар:		
		Priority queues and binary heap trees, Binomial heaps, Fibonacci		
		heaps, Comparison of heap time complexities, Heap sort		
	3.2	Advanced Trees:		
		2-3 tress, 2-3-4 trees, Red-Black Trees, Splay trees, Tries.		
4	4.1 Flow Networks			
		Flow networks, Ford Fulkerson method, Max bipartite matching		
5	5.1	Computational Geometry	1,2	3
		Line Segment properties, determining whether any pair of		
		segment intersects, finding the convex hull, finding the closest		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

		pair of points.		
6	6.1	Approximation algorithms	3	4
		Vertex-cover problem, Traveling-salesman problem, Set-covering		
		problem, Subset-sum problem		
7	7.1	Computational Complexity	3	3
		Polynomial Time verification, Reducibility, NP-completeness -		
		Complexity Classes, NP-Hard and NP-Complete problems.		
		Т	otal	26

•

Course Assessment:

Theory:

ISE-1: Activity: Regular Quizzes of 20 Marks

ISE-2: Activity: Regular Quizzes of 20 Marks

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE-1: Practical Assessment after completing first 4 experiments (20 Marks)

ISE-2: Practical Assessment after completing next 4 experiments (20 Marks) Article Presentation. (10 Marks)

Module No.	Suggested List of experiments							
	Randomized Algorithms							
1.	a. Randomized Quick sort							
	b.	Searching a Skip List						
Advanced Data Structures								
2.	a.	Heap Sort						
	b.	Binary Heap						
	с.	Binomial Heap						
	d. Fibonacci Heap							
	Trees							
3.	a.	2-3-4 Tree operations						
	b.	RB Tree operations						
	с.	Splay Tree						
	d.	Tries						
		Flow Networks						
4.	a.	Ford Fulkerson's algorithm						
	b. Relabel to front algorithm							
		Computation Geometry						
5.	a.	Segment Intersection						
	b.	Convex Hull						
	с.	Closest Pair of points						

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

	Approximation Algorithms					
6.	a. Vertex Cover b. Boolean Satisfiability Problem					
	c. Travelling Salesman Problem d. Knapsack problem					

Recommended Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI, India Second Edition.

- 2. Ellis Harwitz, Sartaz Sahani, "Fundamentals of Computer Algorithms", Galgotia.
- 3. Harsh Bhasin, "Algorithms Design and Analysis", Oxford.

Further Reading:

- 1. Rajeev Motwani, Prabhakar Raghavan , "Randomized algorithms", Delhi Cambridge University Press 1995
- Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf, "Computational Geometry: Algorithms and Applications". Springer-Verlag, 2000. ISBN: 3540656200.

Online Resources:

- 1. https://nptel.ac.in/courses/106104019
- 2. https://www.coursera.org/learn/advanced-algorithms-and-complexity

Course Code Course			Name		Teaching Scheme (Hrs/week)			Credit	s Assigned	ł			
				L	Т	Р	L	Т	Р	Total			
				2 2 2			1	3					
		High Perfo		2	1	r	1	Scheme					
PEC21CEC	011	Comp	uting		ISE1	MSE	ISE2	ES	E	Total			
				Theory	20	30	20	100 (3		100			
								weight	age)				
				Lab	20		30			50			
Pre-requisite Comput			ıter Organiz	ation ar	nd Archi	tecture	1						
CO1				Explain the	design	principl	es and a	archited	ture of m	odern			
				processors.	-								
			CO2	Discuss abo	ut data	classifi	cation a	nd data	access				
				optimizatio	n techn	iques.							
			CO3	Discuss sha					•				
Cou	rse Out	comes		computer a	rchitect	tures an	d the m	nost rele	evant net	work			
				topologies									
			CO4	, , ,									
				models.									
			05	CO5 Examine the performance issues in shared memory									
				parallel programming using OpenMP.									
Module	Unit	Topics							Ref.	Hrs.			
No.	No.	Drococcore							[1][2]	02			
1	1.1	Processors Stored Prog	aram Co	moutor Arc	hitoctu		noral ni	irnoso	[1][2]	03			
		cache- base	-	•			•	•					
				Aoore's Law									
				archies Cach	•								
	1.2			ors- Multith		l proce	ssors-	Vector		03			
		Processors-	Desig	n Principles	s- Max	kimum	perfor	mance					
		estimates-	Program	ming for ve	ctor arc	hitectu	re.						
2	2.1		-	ization- Bala	ance an	alysis a	nd light	speed	[1][2][3]	02			
		estimates-	-										
	2.2	Algorithm c								02			
3	3.1		-	's- Taxonoi		•		-	[4][5]	03			
				memory co	•			rence-					
				stributed-m	-	-		D -					
	3.2		•	performance				Buses-		03			
				ree networl									
		Basics of pa	araneliza	ation- Data a	ana Fuh	ctional	parallel	15111.					

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

		OpenMp work sharing for loops synchronization - reductions - loop scheduling – tasking.			
		Introduction to OpenMp - parallel execution - data scoping-			
5	5.1	Shared Memory Parallel Programming with OPENMP-	[2][5][6]	04	
		baseline.			
	4.2	Refined performance models- Choosing the right scaling	4][5]	03	
		Scalability metrics- Simple scalability laws- parallel efficiency			
4	4.1	Parallel Scalability- Factors that limit parallel execution- 4][5]			

Module	Sr.no	Suggested List of experiments
No.		
1	1	Write an algorithm and program to perform matrix multiplication of two n *
		n matrices on the 2-D mesh SIMD model, Hypercube SIMD Model or
		multiprocessor system.
	2	Implement Pipelines, memory, low level parallelization using OpenMp.
2	3	Study of the Jacobi algorithm and Dense matrix transpose-
	4	Study of the Sparse matrix-vector multiply
3	5	Study of the all pair shortest path All-pairs Dijkstra's algorithm
	6	Study of the all pair shortest path All-pairs Floyd's algorithm
4	7	Study of Scalability for Single board Multi-board, multi-core, multiprocessor
		using Simulator.
	8	Study of Stochastic Model of Diffusion
		Implementation of parallel Jacobi Algorithm using OpenMp.

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks

ISE-2: Two hours 20 Marks

Activity: Article Discussion, Quiz and Assignments

Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

[1] Georg Hager, Gerhard Wellein, Introduction to High Performance Computing for Scientists

and Engineers, Chapman & Hall / CRC Computational Science series, 2011.

- [2] Gene Wagenbreth and John Levesque, High performance Computing: Programming and Application, CRC press, Taylor and francis group, 2010.
- [3] MaciejBrodowicz, Matthew Anderson, and Thomas Sterling, High Performance Computing: Modern Systems and Practices, Morgankaufmann publishers, 2017.
- [4] High Performance Cluster Computing, Volume 1, Architecture and Systems, Rajkumar Buyya, Pearson Education. 1999.
- [5] Berman, Fox and Hey, Grid Computing Making the Global Infrastructure a Reality, Wiley India., 2003
- [6] Hurwitz, Bllor, Kaufman, Halper, Cloud Computing for Dummies, Wiley India, 2010.

Course Co	de	Course Name			Teaching (Hrs/we		cheme	Credit	s Assigned		
					L	Т	Р	L	Т	Ρ	Total
					2		2	2		1	3
		Quantum Co	mputin	g			Exami	nation	Scheme		
PEC21CE0	12					ISE1	MSE	ISE2	ESE	Т	otal
					Theory	20	30	20	100 (30%	10	00
									weightage)		
					Lab	20		30		50)
Dro rogu	icito		Mayo		nction Or	orator	Orthog	opolity	and Normalizati	<u></u>	
Pre-requ	isite		Cond		•	erator,	Orthog	onanty	and Normalizati	011	
			COIIU CO1		ı plain basic	concon	ts of aug	ntum co	mouting		
					•		•		computing throug	-h	
			CO2		chitecture	-	•			511	
			CO3				-	-	is. Is required for qu	ant	um
Cou	rse O	outcomes			mputing	200 110				2110	
			CO4			us quan	tum haro	dware b	uilding principles.		
			CO5		entify the v				<u>.</u>		
			CO6 Describe usage of tools for quantum computing								
Module	Uni	t Topics		1							Hrs.
No.	No.	•									
1			Intro	duct	tion to Qu	antum	Compu	ting			6
	1.1	Motivation							antum Computin		•
						•			ion to Quantun	-	
		mechanics (Overviev	v of	major cono	cepts in	Quantun	n Compi	uting		
	1.2	Qubits and	multi-	qubi	its states	Bloch	Sphere	represe	ntation Quantur	n	
					-	ment M	ajor play	/ers in t	he industry (IBM	Ι,	
		Microsoft, R								+	
2					Blocks for			·			7
	2.1				•				of q-bit system o		
			•			•			States Quantum		
				•	-			• •	sition) Quantun erceptive e.g. Be		
		-				•	-		ng gates. Quantun		
		Logic gates		•		-		-			
	2.2				-				eps performed o	n	
		•	•			•	•	•	uter Moving dat		
		between bit	•		•						
3			Buildi	ng E	Blocks for	Quant	um Prog	ram			7
	3.1				•				of q-bit system o		
			-			-			States Quantur		
		superpositio	on of	qub	oits (valid	and	invalid	superpo	sition) Quantun	n	

		Total	26				
		entanglement, teleportation, superdense coding.					
	5.1	Grover's search algorithm, Shor's Factoring algorithm. Application of					
5		Quantum Algorithm - II	3				
		Jozsa Algorithm, Simon's periodicity algorithm.					
	4.1	Quantum parallelism, Quantum Evolution, Deutsch's Algorithm, Deutsch-					
4	Quantum Algorithm - I						
		between bits and qubits.					
		classical computer Steps performed on Quantum Computer Moving data					
	3.2 Programming model for a Quantum Computing Program Steps performed on						
		Logic gates and Circuit No Cloning Theorem and Teleportation					
		State Operation on qubits: Measuring and transforming using gates. Quantum					
		Entanglement Useful states from quantum algorithmic perceptive e.g. Bell					

Suggested List of experiments:

Sr.no	Students are required to complete at least 10 experiments. Faculty may develop their own set						
•	of experiments for students. List below is only suggestive.						
1	Building Quantum dice.						
2	Building Quantum Random No. Generation.						
3	Composing simple quantum circuits with q-gates and measuring the output into classical bits.						
4	Implementation of Shor's Algorithms.						
5	Implementation of Grover's Algorithm.						
6	Implementation of Deutsch's Algorithm.						
7	Implementation of Deutsch-Jozsa's Algorithm.						
8	Quantum Circuits						
9	Qubit Gates						
10	Bell Circuit & GHZ Circuit						
11	Accuracy of Quantum Phase Estimation						
12	Mini Project such as implementing an API for efficient search using Grover's Algorithms or Integer factorization using Shor's Algorithm.						

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal MSE: Two hours 30 Marks written examination based on 50% syllabus ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for six experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Remaining experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Textbooks:

- **1.** Quantum computing explained, David McMahon, Wiley-interscience, John Wiley & Sons, 2008.
- **2.** 2. Quantum computing for computer scientists, Noson S. Yanofsky, Mirco A. Mannucci, Cambridge University Press 2008.
- 3. Michael A. Nielsen, "Quantum Computation and Quantum Information", Cambridge
- 4. University Press.
- 5. Vladimir Silva, Practical Quantum Computing for Developers, 2018
- 6. Qiskit textbook https://qiskit.org/textbook-beta/.

References:

- **1.** Introduction to Quantum Mechanics, 2nd Edition, David J. Griffiths, Prentice Hall New Jersey 1995.
- **2.** Supriyo Bandopadhyay and Marc Cahy, "Introduction to Spintronics", CRC Press, 2008.
- **3.** Quantum computation and quantum information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press 2010.
- 4. Bernard Zygelman, A First Introduction to Quantum Computing and Information, 2018.
- **5.** The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies, Lars Jaeger.
- 6. La Guardia, Giuliano Gladioli "Quantum Error correction codes" Springer, 2021.

Digital References:

- 1. https://onlinecourses.nptel.ac.in/noc21_cs103/preview.
- 2. https://www.coursera.org/courses?query=quantum%20computing.
- **3.** https://www.cl.cam.ac.uk/teaching/1617/QuantComp/.

Useful Links:

- **1.** IBM Experience: https://quantum-computing.ibm.com/.
- 2. Microsoft Quantum Development Kit https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/#overview.
- 3. Forest SDK PyQuil: https://pyquil-docs.rigetti.com/en/stable/.
- **4.** Google Quantum CIRQ https://quantumai.google/cirq.
- 5. Qiskit Labs IBM https://learn.qiskit.org/course/ch-labs/lab-1-quantum-circuits.

Virtual Labs:

- 1. https://lab.quantumflytrap.com/lab/mach-zehnder?mode=waves.
- 2. https://home.iitd.ac.in/index.php.
- 3. https://quantumcomputing.negd.in/.
- 4. https://iitmandi.ac.in/CQST/.
- 5. https://learn-xpro.mit.edu/quantum-computing?.

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assig				gned			
		L	Т	Р	L	Т	Р	Total	
		2		2	2		1	3	
	Embedded Systems and	Examination Scheme							
PEC21CE013	RTOS		ISE1	MSE	ISE2	ESE	Т	otal	
		Theory	20	30	20	100 (30%		100	
						weightage)			
		Lab	20		30			50	

Pre-requisite	Comp	Computer Hardware and Operating System					
	CO1	Identify and describe various characteristic features and applications of embedded systems.					
	CO2	Analyse and select suitable hardware and communication protocol for embedded systems implementation					
Course Outcomes	CO3	Analyse Task Scheduling Algorithms and Resource Access protocols for Real Time Applications.					
	CO4	Compare GPOS and RTOS and Apply the concepts of RTOS to Real Time Applications					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Embedded Systems		
	1.1	Introduction, Definition, Characteristics & Salient Features,	1,4,	6
		Classification, Application Areas, Overview of Embedded System	5	
		Architecture & Recent Trends.		
	1.2	Design metrics of Embedded system and Challenges in optimization	1,4,	
		of metrics	5	
2		Embedded Hardware and Communication Protocol		
	2.1	Features of Embedded cores- μ C, ASIC, ASSP, SoC, FPGA, RISC and	1,6	
		CISC cores. Types of memories.		
	2.2	Communication Interfaces: Comparative study of Serial	1,4,	
		communication	5	
		Interfaces (RS-232, RS-485), SPI, I2C, CAN, USB (v2.0), Bluetooth,		
		Zig-Bee.		
		(Frame formats of above protocols are not expected)		
3		TASK Scheduling and Resource Access Protocols		8
	3.1	PERIODIC TASK SCHEDULING :Timeline scheduling, Rate Monotonic	3	
		scheduling, Earliest Deadline First, Deadline Monotonic, EDF with		
		constrained deadlines ,Comparison between RM and EDF		
	3.2	LIMITED PREEMPTIVE SCHEDULING	3	
		Introduction ,Non-preemptive scheduling, Preemption thresholds ,		
		Deferred Preemptions, Task splitting, Selecting preemption points,		
		Assessment of the approaches		
	3.3	RESOURCE ACCESS PROTOCOLS	3	

			Total	26
		Priority Exchange Server.		
		Total Bandwidth Server, Earliest Deadline Late Server, Improved		
		Server.		
		Introduction ,Dynamic Priority Exchange Server ,Dynamic Sporadic	-	
	5.2	DYNAMIC PRIORITY SERVERS	2	
		Priority Exchange, Sporadic Server, Slack stealing.		
		Server.		
	5.1	Introduction : Background scheduling , Polling Server, Deferrable	2	
5	5.1	FIXED-PRIORITY SERVERS	2	4
5		Management – Porting MicroC/OS II. Priority Servers		4
		Event Management – Message Management – Memory		
		– Mutual Exclusion - Semaphore.		
	4.2	Task Management – Time Management – Semaphore Management	2	
		Structure – MicroC/OS II initialisation – Starting MicroC/OS II.	2	
		task Communication – Interrupts – Clock Tick – MicroC/OS II Kernel		
		software and comparison with GPOS, Task Kernel – Exclusion – Inter-		
		Real-time Operating system :- Need of RTOS in Embedded system		
		Multitasking – Priorities – Schedulers –		
	4.1	Foreground and Background Process – Resources – Tasks –	2	8
4		Real Time Operating Systems		
		,Schedulability analysis.		
		Inheritance Protocol, Priority Ceiling Protocol, Stack Resource Policy		
		Non-Preemptive Protocol, Highest Locker Priority Protocol, Priority		
		The priority inversion phenomenon , Terminology and assumptions,		

Module	Sr.no	Suggested List of experiments				
No.						
3 1 Write the pseudo code in Linux using C/C++ to perform Priority Base						
		scheduling				
4	2	Porting of FreeRTOS to Arduino/STM32				
4	3	Write a Program to Create Multiple Tasks and understand the				
		Multitaskingcapabilities of RTOS(FreeRTOS)				
4	4	Write a Program to illustrate the Queue Management Features of FreeRTOS.				
4	5	Write a Program to illustrate the Event Management Features of FreeRTOS.				
4	6	Write a Program to illustrate the use of Binary and Counting Semaphore for				
		Task Synchronisation using FreeRTOS				
4	7	Porting FreeRTOS on Rasberry Pi				
4	8	Self-navigating robot in Pi FreeRTOS				

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks

ISE-2: Two hours 20 Marks
Activity: Article Discussion, Quiz and Assignments
Outcome: Reflective Journal
MSE: Two hours 30 Marks written examination based on 50% syllabus
ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.
- 2. Jean J Labrosse, "MicroC/OS II, The Real Time Kernel " 2nd edition, 2002
- 3. Georgio C. Buttazo, "Hard Real Time Computing Systems", Predictable Scheduling Algorithm and Applications, Springer, 2nd edition, 2005
- 4. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 3rd Edition,2015.
- 5. Sriramlyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company Itd., 2003.
- 6. Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX, 2nd edition, 2013

Online Resources:

Lab Reference

- 1. Lab Workshop on Embedded RTOS NPTEL+
- 2. https://github.com/feilipu/Arduino_FreeRTOS_Library
- 3. http://www.micropik.com/PDF/HCSR04.pdf
- 4. http://wiki.beyondlogic.org/index.php?title=Understanding_RaspberryPi_Boot_Process
- 5. http://www.freertos.org/

https://embeddedcomputing.com/technology/open-source/linux-freertos-related/using-freertos-with-the-raspberry-pi-pico

Course Code	Course Name			ching Hrs/v		neme k)		Credits Assigned			
				L		Т	Р	L	Р	Total	
				2		0	2	2	1	3	
							Exami	nation S	cheme		
PEC21CE021	Geographical				ISE	1	MSE	ISE2	ESE	Total	
	Informati	on Syste	ms	Theory	20)	30	20	100 (30%	100	
									weightage)		
				Lab	20)		30		50	
Pre-requisite		-									
		CO1	Demonstrate GIS fundamentals with critical insights.								
		CO2	Differentiate between different spatial data structures								
			and formats								
		CO3	Collect spatial data from diverse sources and integrate								
Course Out	comes		them into GIS projects.								
		CO4		-		•		•	nanipulate spat	ial	
			data	, execut	e ana	alyse	es, and	lgenerat	e maps.		
		CO5	Exec	cute spat	ial d	ata d	querie	s and ge	oprocessing tas	sks	
			•	•			-		ormation from	spatial	
			data	sets and	asse	ess s	patial	relations	ships.		

Module	code	Topics	Ref.	Н
No.				rs
1		Introduction to Geographic Information System: Definition and history, recent trends and applications of GIS; purpose and benefits of GIS, functional components of GIS, importance of GPS and remote sensing data in GIS. Geographic Phenomena: defining geographic phenomena, types of geographic phenomena, Geographic fields, Geographic objects, Boundaries	1	4
2		Data models and structure: Vector and Raster model, TIN (Triangulated reregulated network) data model, comparison of Vector & raster data, Advantages and disadvantages associated with vector, raster and TIN, geodatabase and relational database, introduction to toposheet. various open data sources.	1	5
3		GIS input data: Vector Data: -sources for GIS Data Shape files, vector Data Input – georeferencing, map digitization and editing, topological Relationship.	2	5

	Raster Data Input – Digital Elevation Mode (DEM)- introduction to DEM, types of dem, uses of dem & different types of resolution, introduction to satellite images, image classification, quality assessment of freely available digital elevation model, raster data compression techniques, Different raster and vector data file formats, Raster to Vector and Vector to Raster Conversion, preprocessing of spatial data sets		
4	GIS Data Analysis: Introduction to GIS data Analysis – processes and steps, software and tools used, data selection, reclassification, overlaying analysis, buffer analysis, spatial analysis (Dem Analysis,) surface analysis, network analysis, proximity analysis, vector & raster analysis methods. Error Propagation in spatial data processing: how errors propagate, quantifying error propagation	3	8
5	Data Visualization: Qualitative and Quantitative data visualization, Map outputs and its basic elements, SDI concepts and its current trend	4	4

Total

2
6

Module	Sr.no	Suggested List of experiments		
No.				
1	1	Introduction to GIS software (QGIS, ArcGIS)		
2	2 2 Geo referencing and projection of toposheet, Digitization of map/			
		Toposheet.		
3	3	Spatial Data Analysis		
	4	Preparation of Non-Spatial Data, Linking Spatial and Non-Spatial data		
	5	Google earth integrations in GIS.		
4	6	Spatial and Non spatial Query and Analysis		
	7	Vector data analysis		
	8	Watershed Analysis		
	9	Terrain Analysis		
	10	Network Analysis		

Course Assessment:

Theory:

ISE-1:

Activity: Quiz & assignments-10Marks Case study- 10Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab

ISE:

1. ISE-1 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

[1] Otto Huisman, Rolf A, "Principles of geographic information systems: An Introductory textbook", International Institute for Geo-information science and Earth observation, 2009, 4th Edition

[2] Jonathan Campbell and Michael Shin, "Essentials of Geographic Information Systems", 2011, Saylor Foundation

[3] Chang Kang-tsung (Karl), "Introduction to Geographic Information Systems", McGrawHill,2013, 7th Edition

[4] Heywood, I., Cornelius, S., and Carver S, "An Introduction to Geographical Information Systems", Prentice Hall, U.S.A, 2012

Online Resources:

Esri Training course IIRS-ISRO course on GIS NPTEL course on GIS

Further Reading:

ESRI guide to GIS analysis Andy Mitchell, ESRI press, Red lands

Course C	Course N	ame		ng Sch s/weel			Credits Ass	igned				
				L	Т	Р	L	Т	Р	Total		
		Agile Metho	-	2		2	2		1	3		
		in Softw						Scheme	1			
PEC21CE	022	Engineer	ring		ISE1	MSE	ISE2	ESE	Total			
				Theory	20	30	20	100 (30%	100			
								weightage)				
				Lab	20		30			50		
Pre-requ	isite		Founda	tions of Soft	ware E	ngineeri	ng					
			CO1	Analyze th	e prin	ciples a	and pra	actices of ag	gile sof	tware		
				developme	ent me	thodolo	ogies, i	ncluding Scr	um, Ka	nban,		
				and Extre	me Pro	ogramn	ning (X	P), to unde	rstand	their		
				applicabilit	y in va	rious so	ftware	developmen	t conte	xts.		
			CO2	Evaluate th	e roles	and re	sponsił	pilities of tear	am members emphasizing			
					-	-		vironment, ei	ation, and omes.			
Соц	rse Oi	utcomes		-				, communica				
				-			-	project outco				
				Implement agile project management techniques for								
			-	scope and								
					e engir	neering	practio	ces to enhar	ance software			
				quality.								
					-		•	e strategies fo	or agile			
			adoption in diverse contexts.						1			
Module	Unit	Topics							Ref.	Hrs.		
No.	No.						_					
1	1.1	Introductio	-			-			1,2	4		
			-				-	arison with				
				-			-	anifesto and				
2	2.1	its Principle		-				Agile Teams,	22	4		
∠	2.1	Characteris	-		-Perfor		Agile	-	2,3 4			
		Communica		-	aborati	-	echniq					
		Organizatio					coninq					
3	3.1			-		roiect I	ifecvcl	e: Planning,	3,4,5	6		
-				-	-	-		and Product	-, -, -			
			Vanager	-	-	Planning		view, and				
		Retrospecti	0	, ,				,				
4	4.1							nent (TDD),	4,5	4		
		Continuous	Integra	tion (Cl) ar	nd Cont	tinuous	Deploy	yment (CD),				

		Refactoring and Code Quality Improvement, Pair Programming and Code Reviews		
5	5.1	Scaling Agile: Challenges in Scaling Agile for Large Projects, Agile Frameworks for Scaling: SAFe, LeSS, Nexus, Distributed Agile Teams: Communication and Coordination Strategies, Agile Transformation: Organizational Change Management	5,6	4
6	6.1	Agile Case Studies and Best Practices: Real-world Case Studies of Successful Agile Implementations, Lessons Learned and Best Practices from Industry, Agile Maturity Models and Assessments, Continuous Learning and Improvement in Agile Teams	4,5,6	4
			Total	26

Module No.	Sr.no	Suggested List of experiments
1	1	Scrum Framework Introduction Lab: Students will be introduced to the
		Scrum framework, its roles, ceremonies, and artifacts.
	2	Kanban Board Setup Lab: Students will set up and use a Kanban board to
		manage project tasks and workflow
2	3	Team Formation Simulation Lab: Students will simulate team formation
		scenarios and assign roles based on Agile team dynamics.
	4	Communication and Collaboration Exercise: Students will participate in
		exercises to enhance communication and collaboration within Agile teams.
3	5	User Story Creation Lab: Students will create and prioritize user stories for a
		given project, emphasizing Agile requirements management.
	6	Sprint Planning and Review Meeting Simulation: Students will simulate
		sprint planning and review meetings to understand the Agile project
		management process.
4	7	Test-Driven Development (TDD) Practice Session: Students will practice
		Test-Driven Development (TDD) by writing tests before implementing
		features.
	8	Continuous Integration Demonstration Lab: Students will set up and
		demonstrate continuous integration practices using appropriate tools.
5	9	Scaled Agile Framework (SAFe) Exploration Lab: Students will explore and
		analyze the components of the Scaled Agile Framework (SAFe) for large-
		scale Agile implementations.

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

	10	Distributed Agile Team Communication Exercise: Students will engage in
		exercises to improve communication and coordination in distributed Agile
		teams.

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- [1] J. Sutherland, "Scrum: The Art of Doing Twice the Work in Half the Time", Crown Business, 2014.
- [2] P. Lencioni, "The Five Dysfunctions of a Team", Jossey-Bass, 2002.
- [3] K. Schwaber, "Agile Project Management with Scrum", Microsoft Press, 2004.
- [4] K. Beck, "Test-Driven Development: By Example", Addison-Wesley, 2003.
- [5] C. Larman and B. Vodde, "Scaling Lean & Agile Development: Thinking and Organizational Tools for Large-Scale Scrum", Addison-Wesley, 2008.
- [6] E. Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Currency, 2011.

Online Resources:

- Agile Manifesto: https://agilemanifesto.org/
- Scrum Guide: https://www.scrumguides.org/
- Tuckman's Stages of Group Development: https://www.verywellmind.com/tuckmansstages-of-group-development-2795159
- Agile Project Management Tools: https://www.atlassian.com/agile
- TDD Basics: https://www.agilealliance.org/glossary/tdd/
- Scaled Agile Framework (SAFe): https://www.scaledagileframework.com/
- Agile Case Studies: https://www.agilealliance.org/resources/experience-reports/

Further Reading:

- [1] M. Cohn, "Agile Estimating and Planning", Prentice Hall, 2006.
- [2] D. Pink, "Drive: The Surprising Truth About What Motivates Us", Riverhead Books, 2011.
- [3] D. J. Anderson, "Kanban: Successful Evolutionary Change for Your Technology Business", Blue Hole Press, 2010.
- [4] N. Perkin and P. Abraham, "Agile Transformation: A Guide to Organizational Change", Kogan Page, 2018.
- [5] A. Elssamadisy, "Agile Adoption Patterns: A Roadmap to Organizational Success", Addison-Wesley, 2007.
- [6] Agile Maturity Models: https://agilemanifesto.org/

Course Code		Course Name		Teaching Scheme (Hrs/week)			Credits Assi			gned		
					L	Т	Р	L	Т		P To	tal
PEC21CE023					2		2	2			1 3	
		Block chain Technology & DeFi		Examination Scheme								
					ISE1	MSE	ISE2	ESE		Tot		
				Theory	20	30	20	100 (3		10	0	
								weight	age)		-	
L			•		Lab	20		30			50)
Pre-requisite Course Codes			Data S	ta Structures, Cryptography and System Security								
Course Outcomes			CO1								ogy	
			CO2	Explain the processes involved in public bloc							•	
			CO3	Apply the concepts of private blockchain to Hyperledger								ger
				fabric								
			CO4	Discuss the infrastructure of the Defi and						d the	late	est
			605	 development in the technology. 5 Create the ERC tokens and share with the period 								
			CO5						•			
			CO6	Develop smart contracts for real world applications and mine a block.								
Module	Unit	Topics								Ref.		Hrs.
No.	No. 1.1	Introduction to blockchain: What is blockchain, components 1, 05									0E	
1	1 1.1 Introduction to blockchain: What is blockchain, componed of blockchain, Structure of a Block, The Genesis Block, Me							onlin	۵.	05		
Tree											с.	
		pes: Public, Private, hybrid and Consortium										
	1.2 1.3	Decentralized Consensus, consensus algorithms										
2	2.1		Public blockchain: Introduction to Public Blockchain, basics of							1, 3		08
			Bitcoin, Ethereum and its Components, Mining in Ethereum,								e:	
		Ethereum Virtual Machine (EVM), Transaction, Accounts,								3,4		
		Architecture and Workflow, Comparison between Bitcoin and										
	Ethereum											
	2.2	Introduction to Smart Contracts, Types of Smart Contracts										
	2.3 Introduction to Programming: Solidity Programming – Basic								,			
	functions, function identifiers, variable types, Bytes and Enums, Arrays-Fixed and Dynamic Arrays, Special Arrays-Bytes and											
3	3 1		strings, Structure, Mapping, Inheritance, Error handling									
5	3.1	Private Blockchain: Key characteristics, Consensus Algorithms for Private Blockchain - PAXOS and RAFT, Byzantine Faults:								1, 2,4 Onlin		05
Byzantine Fault Tolerant (BFT) and Practical BFT							i aults.	2	ie.			
	3.2	Hyperledge			ction to		rledger	, Tool	s and	-		
	5.2	Framework				Type		, 1001				

		Hyperledger Fabric Architecture, Components of Hyperledger Fabric: MSP, Chain Codes, Transaction Flow, Working of Hyperledger Fabric		
4	4.1	Decentralized Finance (Defi): Introduction to decentralized finance, Problems with traditional finance that DeFi tries to solve: Centralized control; Limited access; Inefficiency; Lack of interoperability; Opacity Defi infrastructure: blockchain, cryptocurrency, smart contract platforms, Oracles, stablecoins, Uniswap	5	04
5	5.1 5.2	Defi Primitives: Transactions, Fungible tokens, non-fungible tokens, custody, supply adjustment Smart contracts in finance: credit/lending, decentralized exchanges, derivatives, tokenization	5	04
	1		Total	26

Module	Sr.no	Suggested List of experiments
No.		
1	1	Create the genesis block using Puppeth, a CLI tool
	2	Create Merkle tree and trace a transaction in the tree.
2	3	Write smart contract in solidity to transfer ethers to an external wallet
	4	Mine a block and check account balance
3	5	Implement PAXOS/RAFT/BFT/pBFT algorithm.
	6	Case Study of Supply Chain Management using Hyperledger
4	7	Paper presentations on Defi.
	8	Group discussion on whether Defi should be implemented in India and its
		effects on the economy of the nation.
5	9	Create ERC token and share it with the peers.
	10	Discuss use cases of decentralized finance.

Course Assessment:

Theory:

ISE-1: 20 Marks

Activity: Test/Quiz/Assignments

ISE-2: Two hours 20 Marks

Activity: Article Discussion/Quiz/Assignments/Test

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

- 1. **ISE-1** Quizzes/Assignments/Paper Presentation/Article Discussion Quizzes/Assignments based on 50% experiments
- 2. ISE-2 Quizzes/Assignments/Paper Presentation/Article Discussion

Quizzes/Assignments based on 50% experiments

Recommended Books:

- 1. Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and Meena Karthikeyen, Universities Press.
- 2. Blockchain with Hyperledger Fabric, Luc Desrosiers, Nitin Gaur, Salman A. Baset, Venkatraman Ramakrishna, Packt Publishing
- 3. Mastering Ethereum, Building Smart Contract and Dapps, Andreas M. Antonopoulos Dr. Gavin Wood, O'reilly.
- 4. Blockchain with Hyperledger Fabric, LucDesrosiers, Nitin Gaur, Salman A. Baset, Venkatraman Ramakrishna, Packt Publishing
- 5. Defi and the Future of Finance, Campbell Harvey, Aswin Ramachandran, Joey Santoro, Wiley.

Online Resources:

- 1. https://www.geeksforgeeks.org/components-of-blockchain-network/
- 2. https://www.hyperledger.org/use/fabric
- 3. https://docs.soliditylang.org/en/v0.7.4/
- 4. https://youtube.com/playlist?list=PLO5VPQH6OWdVQwpQfw9rZ67O6Pjfo6q-p

Further Reading:

- 1. Blockchain enabled Applications, Vikram Dhillon, Devid Metcalf, Max Hooper, Apress
- 2. Building Blockchain Projects, Narayan Prusty, Packt

Course Code		Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Ρ	Total
OE2111	Constitution of India and	2	1	0	2	1	0	3
	Professional Ethics	Examination Scheme						
			ISE1	MSE	ISE2	ESE	-	Fotal
		Theory	20	30	20	100 (30%		100
						weightage)		
		Tutorial	20		30			150

Pre-requisite	-							
	CO1	Adhere to the core rights and shape one's values.						
	CO2	Display the role and responsibility of Engineering professionals						
	CO3	Hold moral and Ethical solutions to problems through case						
Course Outcomes		studies.						
	CO4	Apply the knowledge of human values to contemporary ethical and global issues.						
	CO5	Compare the three-tier system of the local govt. under the						
		Indian Constitution						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Background and Approach: Fundamental Rights and Duties		
	1.1	Fundamental Rights and Duties, Right to Compensation for being	7	2
		Illegally Deprived of one's Right to Life or Liberty, Right to Travel		
		Abroad and Return to one's Country		
	1.2	Promotion of Inter-Religious harmony and inter-faith values,	8	1
		Composite Culture		
	1.3	Local self- government in the Indian Constitution- Case Studies	7	
		meaning-Three-tier-system-Village-panchayath-Taluka		
		panchayath Zilla-panchayath -Local bodies -Municipalities and		
		Corporations, Bruhath mahanagara Palike. Functions of Election		
		commission, UPSC, MPSC. [Self-Study]		
2		Professional Ethics and Human Values		
	2.1	Sense of Engineering Ethics - Variety of moral issues- Types of	1,2,	3
		inquiry- Moral dilemmas – Moral Autonomy	3,4,	
		Moral dilemmas, Moral Autonomy, Kohlberg's theory	5	
		Gilligan's theory, Consensus and Controversy, Profession&		
		Professionalism, Models of professional roles, Theories about		
		right action		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

	n, Dunubtur	ia, Dunaia		Jui 100 00
(Autonomous	College affi	liated to U	Jniversity	of Mumbai)

		Codes of Ethics, Plagiarism		
	2.2	Human Values. Morals, values, and Ethics – Integrity- Academic integrity- Work Ethics- Service Learning- Civic Virtue Respect for others- Living peacefully- Caring and Sharing- Honestly- Cooperation Commitment Empathy-Self Confidence -Social Expectations.	4,5	2
	2.3	Managing conflict- Respect for authority- Collective bargaining- Confidentiality, Role of confidentiality in moral integrity-Conflicts of interest	2,5	2
3		Global Ethical Concerns		
	3.1	Multinational Corporations- Environmental Ethics- Business Ethics- Computer Ethics	2	2
	3.2	Engineers as Expert witnesses and advisors-Moral leadership- case studies		1
			Total	13

Course Assessment:

Theory:

ISE-1: Activity: Quiz and assignments 20 Marks
 ISE-2: Article Discussion, Quiz and Assignments 20 Marks
 <u>MSE:</u> Two hours 30 Marks written examination based on 50% syllabus
 <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

<u>Tutorial</u>

ISE-1: AICTE & UNESCO's certificate course on Self-directed Emotional Learning for Empathy and Kindness (SEEK) **20 marks**

Link : https://www.framerspace.com/course/seek_(Select SEEK self- directed cohort under the category of youth courses)

ISE-2: AICTE & UNESCO'S certificate course on Social Emotional Learning for Youth Waging Peace (SEL4YWP)- UNESCO **20 Marks**

Link: https://www.framerspace.com/course/ywp?cid=5eaff2c239109c2c12ef8bd3

**Participants need to register themselves in the link https://docs.google.com/spreadsheets/d/1dECtZbAmcPhKKelSEimVv-hzPV7dA_g-Brty2rxC2vE/edit?usp=sharing, before accessing the course content.

Case Study: Module 1.3 10 Marks

Recommended Books:

- [1] Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi,2014
- [2] Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- [3] Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United States, 2005.
- [4] M Govindarajan, S Natarajan and V S Senthil Kumar, Engineering Ethics, PHI Learning Private Ltd, New Delhi, 2012.
- [5] R S Naagarazan, A textbook on professional ethics and human values, New Age International (P) limited, New Delhi, 2006.
- [6] http://www.slideword.org/slidestag.aspx/human-values-and-Professional-ethics.
- [7] Subhash C. Kashyap, Indian Constitution, National Book Trust, New Delhi.
- [8] Baden Powell, BH, The Indian Village Community.

Course Code	Course Name	Teaching (Hrs/wee		ne	Credits Assigned			
		L	Т	Р	L	Т	Ρ	Total
OE2112	Digital Business	2	1	0	2	1	0	3
	Management	Examination Scheme						
		ISE1 MSE ISE2 ESE 1				Total		
		Theory	20	30	20	100 (30%		100
						weightage)		
		Tutorial	20		30			150

Pre-requisite	-	
	CO1	Identify drivers of digital business
Course Outcomes	CO2	Illustrate various approaches and techniques for E-
Course Outcomes		business and management
	CO3	Prepare E-business plan

Modu	Unit	Topics	Ref.	Hrs.
le No.	No.			-
1	1.1	Introduction to Digital Business-	1	9
		Introduction, Background and current status, E-market places,		
		structures, mechanisms, economics and impacts		
		Difference between physical economy and digital economy		
	1.2	Drivers of digital business- Big Data & Analytics, Mobile, Cloud	1	
		Computing, Social media, BYOD, and Internet of Things(digitally		
		intelligent machines/services)		
		Opportunities and Challenges in Digital Business		
2	2.1	Overview of E-Commerce	1	6
		E-Commerce- Meaning, Retailing in e-commerce-products and		
		services, consumer behavior, market research and		
		advertisement		
		B2B-E-commerce-selling and buying in private e-markets, public		
		B2B exchanges and support services, e-supply chains,		
		Collaborative Commerce, Intra business EC and Corporate		
		portals		
		Other E-C models and applications, innovative EC System-From		
		E-government and learning to C2C, mobile commerce and		
		pervasive computing		
		EC Strategy and Implementation-EC strategy and global EC,		
		Economics and Justification of EC, Using Affiliate marketing to		
		promote your e-commerce business, Launching a successful		
		online business and EC project, Legal, Ethics and Societal impacts		
		of EC		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050

(Autonomous College affiliated to University of Mumbai)

3	3.1	Digital Business Support services: ERP as e -business backbone,	1	6
		knowledge Tope Apps, Information and referral system		
	3.2	Application Development: Building Digital business Applications	1	
		and Infrastructure		
4	4.1	Managing E-Business-Managing Knowledge, Management skills	1	6
		for e-business, Managing Risks in e –business		
		Security Threats to e-business -Security Overview, Electronic		
		Commerce Threats, Encryption, Cryptography, Public Key and		
		Private Key Cryptography, Digital Signatures, Digital Certificates,		
		Security Protocols over Public Networks: HTTP, SSL, Firewall as		
		Security Control, Public Key Infrastructure (PKI) for Security,		
		Prominent Cryptographic Applications		
5	5.1	E-Business Strategy-E-business Strategic formulation- Analysis	1	4
		of Company's Internal and external environment, Selection of		
		strategy,		
		E-business strategy into Action, challenges and E-Transition		
		(Process of Digital Transformation)		
6	6.1	Materializing e-business: From Idea to Realization-Business	1	8
		plan preparation		
		Case Studies and presentations		
				39

Course Assessment:

Theory:

ISE-1: Quiz / Case Study Presentation / Presentation on thrust areas (20 marks) **ISE-2:** Mini Project (20 marks)

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Tutorial:

1. ISE-1 Two Assignments based on 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 Three Assignments based on remaining 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books: -

1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011

- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer

7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan

8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance

9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5

10. Measuring Digital Economy-A new perspective- DoI:10.1787/9789264221796-enOECD Publishing

Course Code		Teaching Scheme (Hrs/week)			C		
		L	Т	Р	L	Т	Total
OE2113	Design of	2	1	0	2	1	3
	Experiments	Examination Scheme					
			ISE1 MSE		ISE2	ESE	Total
		Theory	20	30	20	100 (30% weightage)	100
		Tutorial	20		30		50

Pre-requisite	Engin	Engineering Mathematics - III					
	CO1	Plan data collection, to turn data into information and					
Course Outcomes		to make decisions that lead to appropriate action					
Course Outcomes	CO2	Apply the methods taught to real life situations					
	CO3	Plan, analyze, and interpret the results of experiments					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction	1-5	6
		Strategy of Experimentation		
		Typical Applications of Experimental Design		
		Guidelines for Designing Experiments		
		Response Surface Methodology		
2	2.1	Fitting Regression Models	1-5	8
		Linear Regression Models		
		Estimation of the Parameters in Linear Regression Models		
		Hypothesis Testing in Multiple Regression		
		Confidence Intervals in Multiple Regression		
		Prediction of new response observation		
		Regression model diagnostics		
		Testing for lack of fit		
3	3.1	Two-Level Factorial Designs	1-5	7
		The 2 ² Design		
		The 2 ³ Design		
		The General 2 ^k Design		
		A Single Replicate of the 2 ^k Design		
		The Addition of Center Points to the 2 ^k Design,		
		Blocking in the 2 ^k Factorial Design		
		Split-Plot Designs		
4	4.1	Two-Level Fractional Factorial Designs	1-5	7
		The One-Half Fraction of the 2 ^k Design		
		The One-Quarter Fraction of the 2 ^k Design		
		The General 2 ^{k-p} Fractional Factorial Design		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

		Resolution III Designs		
		Resolution IV and V Designs		
		Fractional Factorial Split-Plot Designs		
5	5.1	Response Surface Methods and Designs	1-5	7
		Introduction to Response Surface Methodology		
		The Method of Steepest Ascent		
		Analysis of a Second-Order Response Surface		
		Experimental Designs for Fitting Response Surfaces		
6	6.1	Taguchi Approach	1-5	4
		Crossed Array Designs and Signal-to-Noise Ratios		
		Analysis Methods		
		Robust design examples		
				39

Course Assessment:

Theory:

ISE-1: Quiz / Case Study Presentation / Presentation on thrust areas (20 marks) ISE-2: Mini Project (20 marks)

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus rial:

Tutorial:

1. ISE-1 Two Assignments based on 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 Three Assignments based on remaining 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:

1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001

2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001

3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley

4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2

5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	rse Name		Teaching Scheme (Hrs/week)				Credits Assigned			
				L	Т	Р	L	Т	Р	Total
				0	0	2	0	0	1	1
	Dete	Colora				Exa	minatior	n Schei	me	
CCL21CE01	Data	Science	le la	ISE1		MSE	ISE2	E	SE	Total
				20	-	-	30			50
Pre-requisite		Pytho	on / R Progra	amming	5					
Course O		On successful completion of the course, the learner will be able								
Course O	utcomes	to								
		CO1	Apply sup	ervised	and	unsup	ervised	ML alg	orithm	s to
			solve real-	world	orob	lems.				
		CO2	Implemen	t Deep	lear	ning m	odels fo	r signa	l/image	5
Course O	itcomoc		processing applications.							
Course Of	Course Outcomes		Build a Re	inforce	men	t Learr	ning syst	em for	sequer	ntial
			decision-n	naking.						
		CO4	Develop a	federa	ted l	learnin	g systen	n that o	can be t	tested
			in distribu	ted ma	chin	e learr	ing setti	ngs.		

Exp. No.	Name of the experiment	Ref.	Hrs.			
1	Machine Learning – Supervised Learning					
	Solving classification problems (Fraud detection, spam detection etc.)					
	using supervised learning techniques such as Naïve base/SVM/Decision					
	tree.					
2	Machine Learning – Unsupervised Learning	1,2	2			
	Apply clustering techniques (K-Means clustering/DBSCAN) for a given					
	dataset (for example customer segmentation, Disease diagnosis, etc.)					
3	Machine Learning – Ensemble Learning	1,2	2			
	Implement ensemble Learning Techniques for a classification problem.					
4	Deep Learning – Convolution Neural Networks	3,4	2			
	To build convolution Neural Networks and use them to classify images					
	(Faces, melanomas, etc.)					
5	Deep Learning – Recurrent Neural Networks	3,4	2			
	To build an application for Speech Recognition/Text Summarization or					
	Video Transcription using Recurrent Neural Networks.					
6	Deep Learning – Generative Adversarial Networks	3,4	2			
	To build an application for Image style transfer using GAN.					

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

7	Reinforcement Learning	5,6	2
	Automated Stock Trading Using Deep Reinforcement Learning		
8	Reinforcement Learning – Game design	5,6	2
	Design of small game using Reinforcement learning		
9	Federated Learning	7,8	2
	Implement Sentiment analysis using FedAvg Federated Learning algorithm.		
10	Federated Learning	7,8	2
	Implement Image classification using any two federated Learning Algorithms (Federated Averaging, Federated Stochastic Gradient Descent, or Federated Proximal methods) and compare their performance based on appropriate metrics.		

Course Assessment

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. Ethem Alpaydın, "Introduction to Machine Learning", MIT Press.
- 2. Tom M. Mitchell, "Machine Learning", McGraw Hill.
- **3.** Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book. 2016.
- **4.** Buduma, N. and Locascio, N., "Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc.".
- **5.** Andrew Barto and Richard S. Sutton," Reinforcement Learning: An Introduction", Second Edition, The MIT Press.
- **6.** Sudharsan Ravichandiran," Hands-On Reinforcement Learning with Python, 2nd edition, Packt Publishing.
- **7.** Dinesh C. Verma, "Federated AI for Real-World Business Scenarios, 1st edition, CRC Press.
- 8. Kiyoshi Nakayama, George Jeno," Federated Learning with Python", Packt Publishing.

Online Resources:

- 1. https://www.simplilearn.com/tutorials/deep-learning-tutorial/guide-to-building-powerfulkeras-image-classification-models
- 2. A ten-minute introduction to sequence-to-sequence learning in Keras
- 3. https://www.learndatasci.com/tutorials/reinforcement-q-learning-scratch-python-openai-gym/
- 4. https://neptune.ai/blog/the-best-tools-for-reinforcement-learning-in-python
- 5. https://www.tensorflow.org/federated/federated_learning
- 6. https://towardsdatascience.com/federated-learning-a-step-by-step-implementation-in-tensorflow-aac568283399

NPTEL links:

- NPTEL course on "Machine Learning And Deep Learning Fundamentals And Applications" by Prof. M. K. Bhuyan.
 - https://nptel.ac.in/courses/108103192
- NPTEL course on "Deep Learning":, by Prof. Prabir Kumar Biswas https://onlinecourses.nptel.ac.in/noc19_cs54/preview
- NPTEL course on "Reinforcement Learning" by Prof. Balaraman Ravindran https://onlinecourses.nptel.ac.in/noc19_cs55/preview

Course Code	se Name			Scheme /eek)	Credits Assigned						
				L	Т	Р	L	Т	Р	Total	
				0	0	2	0	0	1	1	
SBL21CE01	Full Stock	Dovolo	nmont			Exami	nati	on Sc	heme		
SELZICEUI	Full Stack	Develo	pment	ISE1		MSE	ISE:	1	ESE	Total	
				25	-	-	25	5		50	
Pre-requisite		C programming									
		On su	On successful completion of the course learner will be able to								
		CO1	CO1 Demonstrate Foundational Understanding of Web Technologies								
		CO2	Develop I	Proficie	ncy i	in Fronte	nd D	evelo	pment v	with	
			React.js a	nd Ang	ular	.js					
Course Ou	utcomes	CO3	Develop I	Backend	d De	velopmei	nt wi	ith No	ode.js an	nd	
			Express.js	5							
		CO4	Integrate	Full-Sta	ack A	Applicatio	n De	evelo	oment w	/ith	
			MongoDE	3							
		CO5	Deploy tl	ne Web	Арр	olications					

Exp. No.	Name of the experiment									
1	Static Website Design: Introduction to frontend and backend technologies, HTML5 and CSS3 fundamentals. CSS: web page using CSS (Cascading Style Sheets)		2							
	 Suggested Experiments (Any one) Build Real Estate Website by using HTML5, CSS3 Language Learning Platform Travel Planning Platform 									
2	Responsive Website Design Javascript Essentials: JavaScript syntax and data types, DOM manipulation and event handling, Functions, closures, and scope.	2,5	2							
	 Suggested Experiments (Any one) Live Chat Application Live Sports Scoreboard Live Auction Platform 									
3	Angular Js: Introduction to Angular, TypeScript, Features of Angular, How to build with Angular components, Responsive Web Designing, Forms in Angular, Angular Routing		2							
	Suggested Experiments (Any one) Real time weather dashboard Live stock Market dashboard 									

4	Front End Web Development: What is React? React.js VS Angular VS VUE.JS, React components, Use of Props, Statement management using		2
	Redux		
	Suggested Experiments (Any one)		
	Live Customer support chat		
	Live Event Streaming Platform		
5	Backend using Node JS and Express JS: Installation and setup,	4,5	2
	Node.js Modules, Introduction to Express Framework, REST APIs		
	Architecture, Microservices		
	Suggested Experiments (Any one)		
	Live Customer support chat		
	Live Event Streaming Platform		
6	SQL: Relational Database, Querying, Joining Tables, Creating Database	6,7	2
	and adding business logic, MySQL tutorial + Normalisation.		
	NoSQL: Introduction to Mongoose DB (Version of MongoDB),		
	Creating Database, Creating Collections, CRUD Operations,		
	Mongoose Schema and Models.		
	Suggested Experiments (Any one)		
	Group chat		
	Portfolio website		
7	API Development and Documentation: Learn how to use APIs to control	8	2
	and manage web applications, including best practices for API testing		
	and documentation.		
	Suggested Experiments (Any one)		
	Social Media Platform		
	E-Commerce Platform		
8	Identity Access Management	4	2
	Implement authentication and authorization in Flask and understand		
	how to design against key security principle.		
9	Spring Core and Spring Boot, Spring Framework, Spring Core Basics,	9	2
	Aspect-Oriented Programming (AOP), Spring Boot Configuration,		
	Spring Boot Data Access, Spring Boot Web Development		
	Suggested Experiment		
	Experiment with creating RESTful APIs using Spring MVC and Spring		
	Boot.		
10	Git and Version Control: Getting Started with Git, Installing Git In Linux,		2
	Installing Git In Windows, Working With A Local Repository, Branches		
	and Merging, working With A Remote Repository		

Course Assessment

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. TextBook-1: HTML & CSS: The Complete Reference Thomas A. Powell, Fifth Edition, Tata McGraw Hill
- 2. WEB PROGRAMMING with HTML5, CSS and JavaScript, John Dean, Jones & Bartlett Learning.
- 3. Full-Stack React Projects: Learn Mern Stack Development, Shama Hoque, Packt Publishing Limited
- 4. The Full Stack Developer, Chris Northwood, Apress publication.
- 5. Full Stack JavaScript: Learn Backbone.js, Node.js and MongoDB, AZAT MARDAN, Apress publication, Second Edition.
- 6. Learning SQL: Generate, Manipulate, and Retrieve Data, by Alan Beaulieu. O'Reilly publication. Third Edition
- 7. MongoDB: The Definitive Guide. Shannon Bradshaw, Kristina Chodorow, and Michael Dirolf. O'Reilly publication. Second Edition.
- 8. "RESTful API Design: Best Practices in API Design with REST", O'Reilly Media.
- 9. "Spring Boot in Action", Craig Walls, Manning
- 10. "Pro Git", Scott Chacon and Ben Straub|

Online Resources:

- Web links and Video Lectures (e-Resources): https://onlinecourses.swayam2.ac.in/aic20_sp11/preview
- 2. https://www.w3.org/html/
- 3. http://www.htmlref.com/
- 4. http://w3schools.org/
- 5. http://www.tutorialspoint.com/css/

Course Code	Course Nam		ing Sche s/week		Credits Assigned						
			L	Т	Р	L	Т	Р	Total		
	Dessevek		2			2			2		
	Research	لممرد			Exami	ination	Scheme				
PSBC21CE02	Methodology a Intellectual			ISE1	MSE	ISE2	ESE	Т	otal		
	Property Righ		Theory	20	30	20	100 (30%	1	.00		
	Property Right	115					weightage)				
Pre-requisite		Nor	None required.								
			At the	end of ti	he cours	se stude	nts will be ab	le to			
		CO1	. Formul	ate r	esearch	prot	olem formu	lation	with		
			approp	riate se	lection	of app	roaches for in	vestig	ation of		
			solutio	ns for re	esearch	probler	ns				
Course C	Dutcomes	CO2	Plan Ex	perime	nts Sciei	ntifically	y for research				
	CO3	Discove	er how	IPR is	regarde	ed as a sourc	e of r	national			
				and ma	irk of an	econoi	mic leadership	o in coi	ntext of		
			globalı	market	scenario)					
		CO4	Perforr	n prior a	art sear	ch and o	draft patent				

Unit	Topics	Ref.	Hrs
No.			
1	Meaning of research problem, Sources of research problem, Criteria	2	5
	Characteristics of a good research problem, Errors in selecting a		
	research problem, Scope and objectives of research problem.		
	Approaches of investigation of solutions for research problem, data		
	collection, analysis, interpretation, necessary instrumentations		
2	Effective literature studies approach, analysis	2,3,4,5	6
	Use Design of Experiments /Taguchi Method to plan a set of		
	experiments or simulations or build prototype		
	Analyze your results and draw conclusions or Build Prototype, Test and		
	Redesign		
3	Introduction to the concepts Property and Intellectual Property, Nature	1,6,7,8,	2
	and Importance of Intellectual Property Rights, Objectives and	9,11,15	
	Importance of understanding Intellectual Property Rights		
4	Understanding the types of Intellectual Property Rights: -Patents-Indian	1,6,7,8,	6
	Patent Office and its Administration, Administration of Patent System –	9,11,15	
	Patenting under Indian Patent Act , Patent		
	Rights and its Scope, Licensing and transfer of technology, Patent		
	information and database. Provisional and Non Provisional Patent		
	Application and Specification, Plant Patenting,		

	Integrated Circuits, Industrial Designs, Trademarks (Registered and unregistered trademarks), Copyrights, Traditional Knowledge, Geographical Indications, Trade Secrets, Case Studies Prior art search, Patent Drafting		
5	New Developments in IPR, Process of Patenting and Development: technological research, innovation, patenting, development, International Scenario: WIPO, TRIPs, Patenting under PCT	1,6,7,8, 9,10,11 ,15	5
	Total		24

Recommended Books:

- 1. Aswani Kumar Bansal : Law of Trademarks in India
- 2. C.R.Kothari :Research Methodology
- 3. Hair, Black, Babin, Anderson: Multivariate Data Analysis
- 4. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 5. Madhav phadake: Quality Engineering Using Robust Design
- 6. Satyawrat Ponkse: The Management of Intellectual Property.
- 7. S K Roy Chaudhary & H K Saharay : The Law of Trademarks, Copyright, Patents
- 8. Intellectual Property Rights under WTO by T. Ramappa, S. Chand.
- 9. Manual of Patent Office Practice and Procedure
- 10. WIPO : WIPO Guide To Using Patent Information
- 11. Resisting Intellectual Property by Halbert , Taylor & Francis
- 12. Industrial Design by Mayall, Mc Graw Hill
- 13. Product Design by Niebel, Mc Graw Hill
- 14. Introduction to Design by Asimov, Prentice Hall
- 15. Intellectual Property in New Technological Age by Robert P. Merges, Peter S. Menell, Mark A. Lemley

Course Assessment:

Theory:

<u>ISE-1:</u>

<u>Activity:</u> Perform one scientific experiment with principles of Scientific Design of Experiments and analyse same. (20 Marks)

<u>ISE-2:</u>

<u>Activity:</u> Conduct Prior art search for product/design or any IPR instrument and make a draft of patent/design (20 Marks)

MSE: Two hours written examination based on 50% syllabus (30 Marks)

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned						d	
		L	Т	Р	L	Т	Ρ	Total	
	Effective Technical Communication	1	0	0	1	0	0	1	
				Examin	nation Scheme				
PSBC21CE03			ISE1	MSE	ISE2	ESE	-	Total	
		Theory	10	15	10	50 (30%		50	
		meory		13	10	weightage)			

Pre-requisite							
	C01	Produce effective dialogue for academic/business					
Course Outcomes	001	related situations.					
		Use listening, speaking, reading and writing skills for					
	CO2	communication purposes and attempt tasks by using					
		functional grammar and vocabulary effectively					
	CO3	Analyze critically different concepts / principles of					
	COS	communication skills.					
	604	Demonstrate productive skills and have a knack for					
	CO4	structured conversations.					
	CO5	Appreciate, analyze, evaluate business reports and					
		research papers.					

Module No.	Topics	Ref.	Hrs.
1	The fundamentals of communication. The seven "Cs" of effective communication. Common errors in English. Enriching vocabulary, styles and registers.	1,2	4
2	Aural communication & Oral communication. The art of listening, stress and intonation, group discussion, oral presentation skills.	3,4	4
3	Types of reading, effective writing, business correspondence, interpretation of technical reports and research papers	4,5	5
Total			13

Course Assessment:

<u>ISE 1 and 2:</u> Based on Quiz /Assignment/ Group Discussion / Presentation (10 marks) <u>MSE:</u> One hour 15 Marks written examination based on 50% syllabus

<u>ESE:</u> Two hours 50 Marks (30% weightage) written examination based on entire syllabus **Recommended Books:**

- 1. Raman Sharma, "Technical Communication", Oxford University Press.
- 2. Raymond Murphy "Essential English Grammar" (Elementary & Intermediate) Cambridge University Press.
- 3. Mark Hancock "English Pronunciation in Use" Cambridge University Press.

- 4. Shirley Taylor, "Model Business Letters, Emails and Other Business Documents" (seventh edition), Prentise Hall
- **5.** Thomas Huckin, Leslie Olsen "Technical writing and Professional Communications for Nonnative speakers of English", McGraw Hill.

Course Code	Course Name		ing Sche s/week			Credits Assigned					
		L	Т	Р	L	Т	Ρ	Total			
		2		2	2		1	3			
	Operating Systems in Modern Era	Examination Scheme									
PCC21CE03			ISE1	MSE	ISE2	ESE		Total			
		Theory	20	30	20	100 (30%		100			
						weightage)					
		Lab	20		30			50			

Pre-requisite	Opera	ating Systems, Computer Network
	CO1	Compare and contrast different OS architectures and technologies.
	CO2	Designing and developing applications for mobile platforms
Course Outcomes	CO3	Implement real-time task scheduling algorithms for distributed environments, and analyze system performance under various workload conditions.
	CO4	Compare security and performance aspects of modern operating systems

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1	Introduction to Modern Operating Systems:		4
		Overview of Modern OS Concepts and Evolution, Design		
		Principles and Goals, Comparison of Monolithic, Microkernel,		
		and Hybrid OS Architectures.		
		Case Studies: Linux, Windows, macOS		
2	2	Distributed Operating Systems:		6
		Characteristics of Distributed Systems, Distributed System		
		Architectures: Client-Server, Peer-to-Peer, Distributed		
		Coordination and Consistency Models, Distributed File Systems:		
		NFS, AFS, HDFS		
		Case Study: Google File System (GFS), Apache Hadoop		
3	3	Real-Time Operating Systems (RTOS):		6
_	_	Characteristics of Real-Time Systems, Task Scheduling		_
		Algorithms: Rate-Monotonic, Earliest Deadline First (EDF), RTOS		
		Kernel Design and Features, Applications of RTOS in Embedded		
		Systems, IoT, and Automotive		
		Case Study: FreeRTOS, QNX, RTLinux		

4	4	Android Operating System: Android Architecture and Components, Application Framework and Development Environment, Process and Memory Management in Android, Android Security and Permissions Model.		6
		Case Study: Android Application Development		
5	5	iOS Operating System: iOS Architecture: Kernel, Frameworks, and Services App Lifecycle and Multitasking, Memory Management and Performance Optimization, iOS Security Features and App Sandbox Case Study: iOS App Development with Swift		6
			Total	28

Module No.	Sr.no	Suggested List of experiments
2	1	Configure Distributed File System Setup
	2	Distributed System Fault Tolerance Testing
	3	Distributed System Communication Analysis:
3	4	Perform RTOS Task Scheduling Analysis:
	5	RTOS Kernel Configuration and Optimization:
4	6	Android App Development:
	7	Android Security Analysis:
5	8	iOS Performance Profiling and Optimization:
	9	iOS App Development:
	10	Presentation on Research papers based on modern OS.

Course Assessment:

Theory:

ISE-1:

Activity: Quiz/assignments/case study discussions 20 Marks ISE-2: Two hours 20 Marks Activity: Quiz/assignments/case study discussions 20 Marks

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. Remaining experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation on research papers for 10 marks

Recommended Books:

- [1] "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos
- [2] "Real-Time Systems Design and Analysis" by Phillip A. Laplante
- [3] "Embedded Systems: Real-Time Interfacing to the MSP430 Microcontroller" by Jonathan W. Valvano

Online Resources:

https://pages.cs.wisc.edu/~remzi/OSTEP/ Andriod- https://www.youtube.com/user/androiddevelopers iOS- https://www.youtube.com/watch?v=mG8A25FqLKQ RTOS- https://www.freertos.org/Documentation/RTOS_book.html

Course Code	2	Course Nam	e		ing Sch s/week			Credits Assig	ned		
				L	Т	Р	L	Т	Р	Total	
				2		2	2		1	3	
		Emerging			Γ		Scheme	2	1		
PCC21CE	04	Paradigms in			ISE1	MSE	ISE2	ESE	1	Total	
		Communicati	on	Theory	20	30	20	100 (30%		100	
			_					weightage)			
				Lab	20		30			50	
Pre-requ	isite		Con	nputer Ne							
			CO1	-		-	s and solu	utions in routir	ng for		
					le appli		_				
			CO2	-		ransition	from IP	/4 to IPv6 and	its		
				implica				(0.5.4.)			
			CO3					vorking (SDN)			
Cou	rse Oi	utcomes	<u> </u>			and prin	•		aice -		
			CO4		-	reless co onsidera		ation technolo	gies a	ma	
			CO5					shallongos of F	Cno	tworks	
			COS								
			COU	design in routing for mobile networks.							
Module	Unit	Topics		acoign	mieat				Ref.	Hrs.	
No.	No.	Topics							Ner.	1113.	
1	1.1	Practical ro	utine	algorithn	ns for tl	ne Interr	net: Bord	er Gateway	1,2	5	
			-					ultiprotocol	,	-	
		Label Switc	• •	•				·			
	1.2	Traffic Shap	ing a	nd Quality	y of Ser	vice (Qo	S), Path C	Computation			
		Element (PO	CE)								
	1.3	Routing alg	orith	ms optimi	zed for	efficient	data stre	eaming			
2	2.1	IPV6: IPv4 c	lefici	encies, IPv	/6 addre	essing, R	outing in	IPv6	1,3	4	
		Networks									
	2.2	Multicast,	· ·	-	6, Neig	hbour di	scovery				
	2.3	Routing Sec									
3	3.1		-					ntralized and	1,6	6	
		Distributed			ata Plan	es, SDN	Controll	ers, Data			
		Center Con				1:4:4:4:4	Duest				
	3.2	Network Fu									
4	3.3	Openflow S						1 0	1 /	5	
4	4.1	Routing Pro			ic wirel	ess netv	VULKS, IVI	AC protocols,	1,4	S	
	4.2	Transport L			ity Prot	ocols for	Ad Hoc	Wireless			
	4.2	Networks, (•								
			zuaili	Ly UI JEIVI							

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

5	5.1	Mobile Ad Hoc Networks (MANETs), Mobile IP (MIP) and Dynamic Host Configuration Protocol (DHCP), Wireless Sensor Networks (WSNs),	5	6
	5.2	5G and Beyond, Mobile Edge Computing (MEC), Handover and Mobility Management, Mobile Cloud Computing (MCC)		
			Total	26

Module	Sr.no	Suggested List of experiments
No.		
1	1	Design a network scenario with multiple applications and devices using
		Cisco Packet Tracer
	2	Evaluate different routing algorithms for streaming applications using
		NS3/OMNeT
2	3	Simulate a wireless network scenario with mobile devices
	4	Set up a Mobile Ad Hoc Network (MANET) with nodes capable of dynamic
		communication using NS3/AODV Simulator
3	5	Integrate edge computing resources into a network design (Docker,
		Kubernetes, Wireshark.)
	6	Network Security Design and Analysis with Wireshark:
		Capture and Analyze Network Traffic
		Identify Normal Network Behaviour
		Simulate Security Incidents
		Capture and Analyze Anomalous Traffic
		• Explore the protocol details of captured packets. Identify any misuse or
		unusual behavior in protocols, such as HTTP, FTP, or DNS
4	7	Critically analyze research papers and industry literature in networking
		Mini project/presentation/Group activity/ Simulation using modern tools

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal MSE: Two hours 30 Marks written examination based on 50% syllabus ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

[1] Olivier Bonaventure, "Computer Networking: Principles, Protocols, and Practice", CreateSpace Independent Publishing Platform

[2]. William Stallings, "High-Speed Networks and Internets", Pearson Education, 2nd Edition.

[3] Pete Loshin, "IPv6, Theory, Protocols and Practice", Morgan Kaufmann, 2nd Edition.

[4] C. Siva Ram Murthy, B.S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", Prentice Hall

[5] Jochen H. Schiller, "Mobile Communications", Pearson.

[6] Thomas D NAdeau and Ken Grey, Software Defined Networking, O'Reilly, 2013

Course Code Course Name Teaching Scheme (Hrs/week)							Credits	Assig	ned					
				L	Т	Р	L	Т						
		Optimizatio		2		2	2			1	3			
		Machine						Scheme						
PEC21CE	031	Learning	3		ISE1	MSE	ISE2	ESE	ESE Total					
				Theory	20	30	20	100 (3						
								weighta						
				Lab	20		30				50			
Pre-requ	isite		Basic	linear alge	ebra, pr	obabili	ty, and	knowledg	e of P	ytho	n to			
				uct simula [.]										
			CO1				-	tion ideas	includ	ling g	gradient			
				descent,										
		.	CO2	Apply co						- 4.1	-l- 1			
Cou	rse Ou	tcomes	CO3	Evolution				al populat	ion me	etho	ds in			
			CO4					gorithms s	such as	s par	ticle			
				swarm a	nd ant c	olony o	ptimiza	tion						
Module	Unit	Topics							Ref.		Hrs.			
No.	No.													
1		Introductio	n and	Backgrour	nd to Op	otimiza	tion Th	eory			02			
	1.1	Basics of Lir	near Al	gebra and	vector	calculu	s, Singu	lar	1,3					
		Value Deco	mposit	ion, PSD N	/latrices	and Ke	ernel Fu	inctions,						
		Vector deri												
	1.2	Basic Ingree		•			•		1,3					
		Problem Cla	assifica	tions, Opt	ima Typ	es, Opt	timizati	on						
		Method		c										
		Classes, Ov		of Uncons	strained	and Co	onstrair	ied						
2	2.1	Optimizatio		Ontimizati	ion						08			
2	2.1	The Basics				to hiv	ninto n	nd	3		08			
		multivariate		•										
		Order Condi	•	• •		-								
		Optimization		•	-									
	2.2	First-Order				-	t Desce	ent,	1,3					
		Conjugate (Gradier	nt, Momer	ntum, N	esterov	v Mome	entum,						
		Adagrad, RI	MSPro	o, learning	rate op	otimizat	ion							
	2.3	Second ord	er opti	mization: I	Newton	metho	d		3					
3		Stochastic I									02			
	3.1	Noisy Desce	ent, Me	esh Adapti	ve Direo	ct Searc	ch, Cros	S-	1,2					
		Entropy												
		Method, Na	atural E	Evolution S	strategie	es, Cova	ariance	Matrix						

		Adaptation		
4		Convex Optimization		04
	4.1	Optimization problems, convex optimization, Linear optimization problems, Quadratic optimization problems, Geometric programming, Overview of Generalized inequality	3	
		constraints and Vector optimization, nonconvex and		
		submodular optimization.		
5	5.1	Evolutionary Methods		05
	5.2	Introduction to Evolutionary Computation: Generic Evolutionary Algorithm, Representation: The Chromosome, Initial Population, Fitness Function, Selection: Selective Pressure, Random Selection, Proportional Selection,	1, 2	
		Tournament Selection, Rank-Based Selection, Elitism and Evolutionary Computation versus Classical		
		Optimization, Stopping conditions		
	5.2	Canonical Genetic Algorithm, Binary Representations of Crossover and Mutation: Binary Representations, Control Parameters	1	
6		Advance Evolutionary Methods		05
-	6.1	Basic Particle Swarm Optimization, Global Best PSO, Local Best PSO, g-best versus I-best PSO, Velocity Components, Geometric Illustration, Algorithm Aspects, Social Network Structures	1, 2	
	6.2	Ant Colony Optimization Meta-Heuristic, Foraging Behavior of Ants, Stigmergy and Artificial Pheromone, Simple Ant Colony Optimization, Ant System, Ant Colony System	2	
	1		Total	26

Module	Sr.no	Suggested List of experiments
No.		
2	1	To implement Gradient Descent algorithm
	2	To implement Newton method
3	3	To implement the Stochastic Gradient Descent algorithm
4	4	To apply convex optimization technique to solve the optimization problem for
		real world problem
5	5	To apply Genetic Algorithm for real world problem
	6	To compare and implement different selection mechanism using genetic
		algorithm
	7	To implement various mutation and crossover mechanisms

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

6	8	To implement Particles Swarm optimization
	9	To implement Ant colony optimization
	10	Mini project/presentation/Group activity/ Simulation using modern tools

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 15 marks.

2. ISE-2

a. Four experiments. Continuous pre-defined rubrics-based evaluation for 15 marks.

b. Mini project/Simulation using modern tools to solve the given problem statement for 20 marks

Recommended Books:

- 1. Mykel J. Kochenderfer, Tim A.Wheeler, "Algorithms for Optimization", MIT Press (2019)
- 2. Andries P Engelbrecht, "Computational Intelligence-An Introduction", Second-Edition, Wiley
- 3. Charu Aggarwal, "Linear Algebra and Optimization for Machine Learning", Springer, 2020.
- 4. S. Bubeck, "Convex Optimization: Algorithms and Complexity, Foundations and Trends in Optimization", 2015.

Online Resources:

- 1. Convex optimization (NPTEL)
- 2. Constrained and Unconstrained optimization (NPTEL)
- 3. Machine-learning-model-performance (Coursera)
- 4. Deep-neural-network optimization (Coursera)

Further Reading:

[1] SuvritSra, Sebastian Nowozin, Stephen J. Wright, Optimization for Machine Learning, The MIT Press

[2] Xin-She Yang Middlesex, Optimization techniques and applications with examples, Wiley

[3] A.E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Springer

[4] F. Bach, "Learning with Submodular Functions: A Convex Optimization Perspective", Foundations and Trends in Machine Learning", Now Publishers Inc.

Course	Code	Course Na	ame		ing Sche s/week		Credits Assigned				
				L	Т	Р	L	Т	Ρ	То	tal
				2		2	2		1	3	
		Generativ	e Al	Examination Scheme				cheme			
PEC21CE032					ISE1	MSE	ISE2	ESE		Tot	al
				Theory	20	30	20	100 (30%		10	0
							weightage)				
				Lab	20		30			50)
Pre-requisite Pyth			Pytho	n Program	ming						
			CO1	Explain t	he fund	amenta	l conce	ots and techni	que	s of	:
				generativ	ve artifi	cial inte	lligence				
			CO2	Apply ge	nerativ	e model	s to crea	ate artistic out	put	S	
				across va	arious d	omains.					
			CO3	Analyze a	and eva	luate th	e perfo	rmance and qu	ualit	ty o	f
				generati	ve mod	els.					
			CO4	-		-	generati	ve AI systems	for		
				specific creative tasks.							
			CO5	Demonstrate proficiency in using tools and libraries for							
				generative art.							
	C			Critically assess the ethical implications and societal							
				impacts of generative AI in art and design.							
Modu	Unit	Topics	Topics Ref. Hrs.								
le No.	No.										
1		Introductio	n to Ge	nerative A	rt and A	l (5 hou	ırs)				
	1.1	Overview o	f Gener	ative Art: Definition, history, and				1,2	2	1	
		significance	e.								
	1.2	Introductio				-	erative r	nodels,	1,2	2	1
		generative									
	1.3			s: Probabilistic models, autoregressive				1,2	2	2	
		models, gei				orks (GA	ANs), an	d			
		variational			-						
	1.4	Application			in Art:	Image g	generation	on, music	1,2	2	1
		generation,				<u>,</u>					6
2	2.1	Generative		•				andural	2		6
	2.1	Basics of Im	•		-ixei ma	mpulat	ion, pro	cedural	2		1
	2.2	generation			duorcar	ial Natur	iorks IC		2		2
	2.2	Introductio					•		2		2
		Architectur StyleGAN).	e, li dill	ing process	5, CUITIT		ations (1	JUGAN,			
	2.3	Conditional	Imago	Generatio	n. Cond	itional (SANC ni	v2niv	2		2
	2.5	CycleGAN.	mage	Generatio			JAINS, PI	Λ ∠ μιλ,	2		2
		CycledAin.									

			Total	26
	5.4	art, music composition, and literature.	5	1
	5.4	authenticity in generative art. Creative Applications of Generative AI: Case studies in visual	5	1
	5.3	Ethical Considerations in Generative AI: Bias, ownership, and	5	2
	5.2	Transfer Learning in Generative AI: Fine-tuning pre-trained models for specific tasks.	5	1
	5.1	Interactive Generative Systems: Interactive art installations, real-time generative art.	5	1
5		Advanced Topics and Applications (5 hours)	-	5
	4.4	Evaluation of Text Generation Models: Coherence, fluency, and semantic evaluation metrics.	3,4	1
		representations from Transformers).		
	4.3	Generative Language Models: GPT (Generative Pre-trained Transformer) models, BERT (Bidirectional Encoder	3,4	2
	4.2	training process, and applications in text generation.		2
	4.2	Long Short-Term Memory (LSTM) Networks: Architecture,	3,4	1
		neural networks (RNNs) for text generation.	-,	
	4.1	Introduction to Text Generation: Markov chains, recurrent	3,4	1
4		Text Generation and Natural Language Processing (5 hours)		5
	3.4	Evaluation of Generated Music: Subjective and objective evaluation methods for musical output.	2,3	1
		GAN architectures for audio synthesis.		
	3.3	Audio Generation with GANs: WaveGAN, SpecGAN, and other	2,3	2
		networks (RNNs), LSTM networks for music generation.		
	3.2	Neural Network-based Music Generation: Recurrent neural	2,3	1
	5.1	audio synthesis methods.	2,5	-
3	3.1	Music Generation Techniques: Symbolic music generation,	2,3	1
3		assessment, perceptual evaluation. Generative Music and Audio (5 hours)		5
	2.4	Evaluation of Generated Images: Metrics for image quality	2	1

Module	Sr.no	Suggested List of experiments
No.		
1	1	Experiment 1: Implement a simple generative art program using pixel
		manipulation techniques in Python, generating abstract patterns.
	2	Experiment 2: Train a basic generative adversarial network (GAN) using
		TensorFlow or PyTorch to generate synthetic images resembling handwritten
		digits from the MNIST dataset.
2	3	Experiment 3: Develop a conditional GAN (cGAN) to generate colored images
		of specific objects (e.g., cats, cars) from the CIFAR-10 dataset.

	4	Experiment 4: Explore the latent space of a pre-trained StyleGAN model and
		manipulate latent vectors to generate diverse and controllable images.
3	5	Experiment 5: Create a recurrent neural network (RNN) model using
		TensorFlow or PyTorch to generate MIDI music sequences based on a given
		set of input melodies.
	6	Experiment 6: Train a WaveGAN model to generate realistic audio samples of
		musical instruments or natural sounds (e.g., bird chirps, ocean waves).
4	7	Experiment 7: Implement a basic Markov chain text generator in Python to
		generate text based on a corpus of literature or song lyrics.
	8	Experiment 8: Fine-tune a pre-trained GPT model using the Hugging Face
		Transformers library to generate coherent and contextually relevant text
		passages on a given topic.
5	9	Experiment 9: Design an interactive generative art installation using
		Processing or p5.js, allowing users to influence the output through real-time
		interactions (e.g., mouse movements, keyboard inputs).
	10	Experiment 10: Investigate the transfer learning capabilities of a pre-trained
		VQGAN model by fine-tuning it on a custom dataset and generating novel
		images related to a specific theme or style.
		Mini project/presentation/Group activity/ Simulation using modern tools
		Mini Project List -
		"Artistic Image Generation using Conditional GANs"
		"Music Composition with Recurrent Neural Networks"
		"Text Generation with Pre-trained Language Models"
		"Real-time Interactive Generative Art Installation"
		"Character Animation Synthesis using GANimation"
		"Audio Synthesis and Sound Design with WaveGAN"
		"Generative Poetry Generation with LSTM Networks"
		"Exploring Style Transfer in Generative Art"
		"Creating AI-driven Abstract Paintings"
		"Generative Landscape Generation using Procedural Techniques"
		Simulation Tool :
		TensorFlow and Keras, PyTorch, GANimation, Magenta Studio, OpenAI's GPT-3
		API: OpenAI's GPT-3 (Generative Pre-trained Transformer 3).
		Processing: Processing is a flexible software sketchbook and a language for
		learning how to code within the context of the visual arts. It can be used for
		creating interactive generative art installations and visualizations.
		p5.js: p5.js is a JavaScript library inspired by Processing, designed for artists,
		designers, educators, and beginners. It can be used for creating interactive
		visualizations and generative art projects directly in the web browser.

	Hugging Face Transformers Library: The Hugging Face Transformers library provides pre-trained models and tools for working with state-of-the-art natural language processing (NLP) models, including GPT-2, BERT, and more. It can be used for experimenting with text generation and other NLP tasks.
--	---

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Four experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- [1] "Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster.
- [2] "Artificial Intelligence and Creativity: An Interdisciplinary Approach" by Jon McCormack and Mark d'Inverno.
- [3] "The Deep Learning Revolution" by Terrence J. Sejnowski.
- [4] "Creative Code: Aesthetics + Computation" by John Maeda.
- [5] "Artificial Unintelligence: How Computers Misunderstand the World" by Meredith Broussard.

Online Resources:

- 1. TensorFlow and Keras:
 - TensorFlow Tutorials: tensorflow.org/tutorials
 - Keras Documentation: keras.io
- 2. PyTorch:
 - PyTorch Tutorials: pytorch.org/tutorials
 - Fast.ai: fast.ai

- 3. Magenta Studio:
 - Magenta Studio: magenta.tensorflow.org/studio
 - Magenta GitHub Repository: github.com/magenta/magenta
- 4. OpenAI's GPT-3:
 - OpenAI GPT-3 Playground: openai.com/gpt-3
 - Hugging Face Transformers Library: huggingface.co/transformers
- 5. Processing and p5.js:
 - Processing Foundation: processingfoundation.org
 - p5.js Website: p5js.org
- 6. Google Colab:
 - Google Colab: colab.research.google.com
- 7. GitHub:
 - GitHub: github.com
 - GitHub Generative AI Repository: github.com/topics/generative-ai
- 8. Coursera:
 - Coursera Deep Learning Specialization: coursera.org/specializations/deep-learning
 - Coursera Generative Adversarial Networks (GANs) Specialization: coursera.org/specializations/generative-adversarial-networks-gans
- 9. Papers with Code:
 - Papers with Code: paperswithcode.com
 - Generative Models Section: paperswithcode.com/area/generative-models

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Ρ	Total
		2		2	2		1	3
	Deep Learning with	Examination Scheme						
PEC21CE033		ISE1	MSE	ISE2	ESE	-	Total	
	Processing	Theory	20	30	20	100 (30%		100
						weightage)		
		Lab	20		30			50

Pre-requisite	Linera	Linera Algebra, Statistics, Probability Theory and Python			
	Progr	amming			
	CO1	Implement Deep learning models for signal/image			
		processing applications.			
	CO2	Implement sequence models for data-based time series			
		processing applications.			
Course Outcomes	CO3	Develop applications using attention mechanism			
	CO4	Implement large language models to solve real-world			
		problems.			
	CO5	Demonstrate proficiency in using tools and libraries for			
		implementing Large Language Models.			

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Deep Networks: Fundamentals, Brief History, Classes of Deep	1	1
		Learning Basic Terminologies of Deep Learning		
	1.2	Training Feedforward DNN, Optimization Learning with	1	2
		backpropagation, Learning Parameters: Gradient Descent (GD),		
		Stochastic and Mini Batch GD, Momentum Based GD, Adam,		
		RMSProp		
	1.3	Regularization Overview of Overfitting, Types of biases, Bias	1	1
		Variance Tradeoff Regularization Methods: L1, L2 regularization		
2	2.1	Convolution Operation, Motivation, Basic structure of a	2,3	2
		convolutional neural network: Padding, strides, pooling, fully		
		connected layers, interleaving between layers		
	2.2	Training a convolutional network: Backpropagation through	2,3	2
		convolution, Backpropagation as convolution with inverted		
		filter,		
	2.3	Introduction to Transfer Learning and Domain Adaptation,	2,3	4
		Comparison of Domain Adaptation and transfer learning,		
		Modern Deep Learning Architectures: LeNet, AlexNet, ZF-Net,		
		VGGNet, GoogLeNet, ResNet ,Mobile Net and DenseNet		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

The figure institution, Bundstand, Bundita (11), Atambar 100 000	
(Autonomous College affiliated to University of Mumbai)	

3	3.1	Sequential Model: Introduction, Notations, Recurrent Neural Network Model, Different Types of RNNs, Vanishing Gradients with	2,3	2
		RNNs, Gated Recurrent Unit (GRU), Bidirectional RNN, Deep RNNs		
	3.2	Long Short Term Memory (LSTM)-Need for memory in sequential data modeling, Architecture and components of LSTM networks Gating mechanisms: input gate, forget gate, output gate	2,3	2
4	4.1	Attention Mechanisms and Transformers-Introduction to attention mechanism, Taxonomy of attention, Self- attention and multi head attention, comparing CNN, RNN and Self-attention	4	2
	4.2	Transformers- Archiecture, ENCODER MODULE, DECODER MODULE, Deep learning transformer-based models- BERT, RoBERT and DistilBERT	4	2
5	5.1	Generative Models		
	5.3	Introduction to Generative AI: Basics of generative models, generative vs. discriminative models.	5	1
		Generative Models: Probabilistic models, autoregressive models, generative adversarial networks (GANs), and variational autoencoders (VAEs).	5	2
6		Recent Trends and Applications		
		Applications: Language Translation, Text Summarization Visual Question Answering, Image generation, music generation, code generation	5	2
		•	Total	26

Module	Sr.no	Suggested List of experiments	
No.			
1	1	 Apply any of the following learning algorithms to learn the parameters of the supervised single layer feed-forward neural network. a. Stochastic Gradient Descent b. Mini Batch Gradient Descent c. Momentum GD d. Nestorev GD e. Adam Learning GD 	
	2	Design and implement a fully connected deep neural network with at least 2 hidden layers for a classification application	
2	3	Design and implement a CNN model for digit recognition application.	
	4	Design and implement a CNN model for image classification.	

3	5	Design and implement RNN for Text classification
	6	Design and implement LSTM predicting data based on time series
4	7	Implement BERT for text summarization
	8	Compare the performance of BERT and its variations for text classification
	1	

		application
5	9	Implement text generation using any one of large language model
	10	Mini Project- Implement any one application of Deep learning

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

- a. Five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- b. Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- [1] Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book. 2016.
- [2] Li Deng and Dong Yu, "Deep Learning Methods and Applications", now publishers Inc (30 June 2014).
- [3] Jon Krohn, Grant Beyleveld, Aglae Bassens, "Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence", Pearson Education.
- [4] Lewis Tunstall, Leandro von Werra, Thomas Wolf, "Natural Language Processing with Transformers: Building Language Applications with Hugging Face" O'Reilly Media, Inc
- [5] Alger Fraley, "The Artificial Intelligence and Generative AI Bible: [5 in 1] The Most Updated and Complete Guide"

Online Resources:

 Natural Language Processing By Prof. Pawan Goyal, IIT Kharagpur https://onlinecourses.nptel.ac.in/noc21_cs102/preview

- Course: Applied Natural Language Processing by Prof. Ramaseshan R, CMI https://onlinecourses.nptel.ac.in/noc20_cs87/preview
- https://deeplearning.cs.cmu.edu/S21/index.html

Further Reading:

Kamath, U., Graham, K., & Emara, W. (2022). Transformers for Machine Learning: A Deep Dive (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781003170082

Course Code	Course Name	Teaching (Hrs/wee		cheme	Credits Assigned			
		L	Т	Р	L	Т	Ρ	Total
		2		2	2		1	3
	Data Architecture	Examinat	tion Sc	heme				
PEC21CE041	and Management		ISE1	MSE	ISE2	ESE	Т	otal
		Theory	20	30	20	100 (30%	10	00
						weightage)		
		Lab	20		30		50)

Pre-requisite	Course		
Codes			
		CO1	Explain the role of data Architecture in Enterprise
		CO2	Demonstrate the proficiency in SQL and NoSQL DB systems
Course Outcomes		CO3	Explain Strategies for integrating data for various sources
Course Outcomes		CO4	Implementation of Data security measures
		CO5	Implementation of Hadoop ecosystem
		CO6	Optimize data architectures that drive business success in
			today's data-driven world.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Data Architecture- Understanding the role of a	1	2
		Data Architect, Enterprise Data architecture requirements		
	1.2	Overview of data architecture components and principles.,		
2	2.1	Data Modelling and Design- Conceptual, logical, and physical	1	2
		data modelling techniques.		
	2.2	Normalization and demoralization processes Best practices for		
		designing effective data models		
3	3.1	Database Management Systems (DBMS) - Relational database	2	3
		fundamentals and advanced SQL querying and optimization.		
	3.2	Introduction to NoSQL databases		
	3.3	NoSQL case studies		
4	4.1	Data Integration and ETL Processes - Strategies for integrating	4	3
		data from heterogeneous sources		
	4.2	Extract, Transform, Load (ETL) processes and tools.		
	4.3	Real-time data integration techniques		
5	5.1	Data Governance and Compliance- Principles of data	7	2
		governance and stewardship. Data encryption methods and best		
		practices		
	5.2	Regulatory compliance requirements		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

6	6.1	Data Security and Privacy- Data encryption, access control, and	6	2
		privacy-preserving techniques		
7	7.1	Data Warehousing and Business Intelligence - Data warehouse architecture and design principles	3	3
		Online Analytical Processing (OLAP) and multidimensional data analysis, Developing interactive dashboards and reports		
8	8.1	Big Data Technologies - Introduction to Hadoop ecosystem components.	8	3
	8.2	Streaming data processing with Apache Kafka and Apache Flink		
	8.3	Implementing big data solutions for scalability and performance		
9	9.1	Cloud Data Management - Cloud storage and database services. (e.g., AWS S3, RDS, Azure SQL Database).	6	3
	9.2	Cloud-native data architectures and server less computing.		
	9.3	Multi-cloud and hybrid cloud strategies		
10	10.1	Emerging Trends in Data Architecture - Block chain technology and Internet of Things (IoT) data processing.		3
	10.2	Edge computing and distributed data architectures.	9	
Total	•	•		26

Course Assessment:

Theory:

ISE-1:

Activity: Quiz and assignments 20 Marks ISE-2: Two hours 20 Marks Activity: Article Discussion, Quiz and Assignments Outcome: Reflective Journal

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Sr.no	Suggested List of experiments
1	Design and implement a relational database schema for a specific enterprise application
2	Use of advanced SQL, Group by, grouping sets, cube, rollup for given task

 3 Data Security Experiment - Implement data encryption and access control mechanisms to protect sensitive data in a database 4 Data Warehouse Design and implementation Experiment- Design a dimensional model for a data warehouse based on given business requirements, Import and export data, analysis using pivot table 5 Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce algorithm to process large datasets. 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power Bl/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 11 Research Paper Presentation and implementation/Simulation using modern tools 		
 4 Data Warehouse Design and implementation Experiment- Design a dimensional model for a data warehouse based on given business requirements, Import and export data, analysis using pivot table 5 Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce algorithm to process large datasets. 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power BI/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 	3	
 a data warehouse based on given business requirements, Import and export data, analysis using pivot table 5 Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce algorithm to process large datasets. 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power BI/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 		protect sensitive data in a database
 using pivot table Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce algorithm to process large datasets. Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power Bl/other. Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 	4	Data Warehouse Design and implementation Experiment- Design a dimensional model for
 5 Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce algorithm to process large datasets. 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power Bl/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 		a data warehouse based on given business requirements, Import and export data, analysis
 algorithm to process large datasets. 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power BI/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 		using pivot table
 6 Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate data from an on-premises database. 7 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power Bl/other. 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment: - Explore block chain technology and its applications in data management through case studies and simulations. 	5	Big Data Experiment: - Set up and configure a Hadoop cluster, and implement a MapReduce
 data from an on-premises database. Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power BI/other. Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 		algorithm to process large datasets.
 Business Intelligence Experiment: - Develop interactive dashboards and reports using a business intelligence tool like Tableau or Power BI/other. Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 	6	Cloud Data Management Experiment: - Deploy a cloud-based database service and migrate
 business intelligence tool like Tableau or Power BI/other. Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 		data from an on-premises database.
 8 Data Governance Experiment: - Define data governance policies and procedures for managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 	7	Business Intelligence Experiment: - Develop interactive dashboards and reports using a
 managing data quality and compliance. 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 		business intelligence tool like Tableau or Power BI/other.
 9 IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT sensor data using cloud services. 10 Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 	8	Data Governance Experiment: - Define data governance policies and procedures for
 sensor data using cloud services. Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations. 		managing data quality and compliance.
10 Block chain Experiment:- Explore block chain technology and its applications in data management through case studies and simulations.	9	IoT Data Processing Experiment- Design and implement a data processing pipeline for IoT
management through case studies and simulations.		sensor data using cloud services.
	10	Block chain Experiment:- Explore block chain technology and its applications in data
11 Research Paper Presentation and implementation/Simulation using modern tools		management through case studies and simulations.
	11	Research Paper Presentation and implementation/Simulation using modern tools

Recommended Books:

- 1. "Data Architecture: A Primer for the Data Scientist" by W.H. Inmon, Dan Linstedt, and Mary Levins
- 2. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann
- 3. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling" by Ralph Kimball and Margy Ross
- 4. "Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions" by Gregor Hohpe and Bobby Woolf
- 5. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy
- 6. "Cloud Architecture Patterns: Using Microsoft Azure" by Bill Wilder
- 7. "The DAMA Guide to the Data Management Body of Knowledge (DAMA-DMBOK Guide)" by DAMA International
- 8. "Big Data Architect's Handbook", Syed Muhammad Fahad Akhtar, O'Reilly
- 9. Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhillash K. A and Meena Karthikeyen, Universities Press

Online Resources:

GitHub - raycad/stream-processing: Stream processing guidelines and examples using Apache Flink and Apache Spark-https://github.com/raycad/stream-processing

Course Code	Course Name	Teaching	Sche	me (Hrs/	week)	Cred	its As	signe	d
		L	Т		Р	L	Т	Р	Total
		3		2		3			3
PEC21CE042	Bioinformatics				Examina	tion Sch	eme		
		ISE1		MSE	ISE2	ESE			Total
		20		30	20	100 (3	0%		100
						weight	age)		
		20			30	-	-		50

Pre-requisite		
	CO1	Elaborate the components of Machine Vision Application
	CO2	Perform image, video pre-processing operations
	CO3	Explain various transformations, interpolation.
Course Outcomes	CO4	Elaborate motion tracking in video.
	CO5	Analyse and Implement appropriate filtering techniques
		for a given problem.
	CO6	Develop applications based on machine vision.

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Fundamentals of Genes and Genomes		4
		Biological Macromolecules, Genomics, and Bioinformatics	1,2,3	
		DNA as the Universal Genetic Material		
		Typical Eukaryotic Gene Structure		
		Mutations in the DNA Sequence		
		Protein Structure and Function		
		Genome Structure and Organization		
2		Fundamentals of Molecular Evolution		4
		Bioinformatics, Molecular Evolution, and Phylogenetics	1,2,3	
		Molecular Basis of Heritable Genetic Variations		
		Factors that Affect Gene Frequency in a Population		
		The Neutral Theory of Evolution		
		Molecular Phylogenetics		
		From Sanger Sequencing to Pyrosequencing		
		• Pyrosequencing, Mutation Detection, and SNP Genotyping		
		Next-Generation Sequencing Platforms		
		• High-Density Oligonucleotide-Probe-Based Array to		
		Investigate Genome Expression		

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai – 400 050 (Autonomous College affiliated to University of Mumbai)

		 Genome-Wide Mutagenesis, Genome Editing, and Interference of Genome Expression 	
3		The Beginning of Bioinformatics1,2,3• Definition of Bioinformatics1,2,3• Bioinformatics Versus Computational Biology60als of Bioinformatics Analysis• Retrieving protein sequencesRetrieving DNA sequences	4
4		Database Search, Data Retrieval Systems1, 2,3• Sequence Data Formats1, 2,3• Conversion of Sequence Formats Using Readseq1, 2,3• Primary Sequence Databases—GenBank, EMBL-Bank, and DDBJ1• Making use of GenBank1• Making use of Gene-Centric databases1• Secondary Databases1• Data Visualization in Genome Browsers1• Data Retrieval1	4
5		 Data Retrieval Simple alignments, Gaps, Scoring Matrices, Global and Local 1,2,3 Alignments, Smith-Waterman Algorithm, BLAST, FASTA, Multiple sequence Alignments, Gene Prediction, Statistical Approaches to Gene Prediction, Spliced Alignment 	4
6	6.1	 Genome Algorithms The dawn of sequencing, the biological sequence or 1,2,3 structure deficit, human genome project and its status, homology and analogy, web browsers. Genome Rearrangements, Sorting by Reversals, Block Alignment and the Four-Russians Speedup, Constructing Alignments in Sub-quadratic Time, Protein Sequencing and Identification, the Peptide Sequencing Problem 	6

Total 26

Course Assessment:

Theory:

ISE-1:

Two hours 20 Marks Activity: Quiz and assignments ISE-2:

Two hours 20 Marks Activity: Quiz and assignments

MSE: Two hours 30 Marks written examination based on 50% syllabus.

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Lab:

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. Supratim Choudhuri, "Bioinformatics for Beginners", 2014 Elsevier
- 2. Dan E. Krane, Michael L. Raymer, "Fundamental Concepts of Bioinformatics,", Pearson Education, Inc. Fourth Edition, 9780805346336.
- 3. Harshawardhan P. Bal, "Bioinformatics Principles and Applications", Tata McGraw-Hill, seventh reprint, 9780195692303.

Course Code	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned			
		L	Т	Р	L	Т	Ρ	Total	
	Industrial Internet	2		2	2		1	3	
	of Things (IIoT)	Examination Scheme							
PEC21CE043			ISE1	MSE	ISE2	ESE		Total	
		Theory	20	30	20	100 (30%		100	
						weightage)			
		Lab	20		30			50	

Pre-requisite	Embe	dded systems, Computer Networks, Web Technologies
	CO1	Explain the functional blocks and communication methodology relevant to IoT.
	CO2	Identify various components of IIoT
	CO3	Apply IIoT Protocols for Industrial
Course Outcomes		automation/applications
course Outcomes	CO4	Explain aspects of control and supervisory level of
		automation
	CO5	Evaluate methods for data collection and analysis in IIoT-
		based systems.
	CO6	Analyze the various security issues in IIoT

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	Introd	luction to IoT		
	1.1	Definition and Characteristics of IoT	1,2	3
	1.2	IoT Protocols and Functional Blocks	1,2	
	1.3	IoT Communication Models	1,2	
	1.4	IoT Communication APIs:- REST and WebSockets	1,2	
2	lloT C	omponents		5
	2.1	Sensors and Interfacing: Introduction to Sensors,	1,2,3,4	
		Classification, Role of Sensors in IIoT, Various types of		
		Sensors, Special requirements for IIoT sensors		
	2.2	Role of Actuators, Types of Actuators.	1,2,3	
	2.3	Protocols such as HART, MODBUS-Serial & Parallel,	1,2,3,5	
		Ethernet, BACnet, Current, M2M		
3	Comm	nunication Protocols in IIoT		5
	3.1	Web Communication Protocols for connected devices:-	1,2	
		CoAP, LWM2M, MQTT, XMPP, HTTP, SOAP Protocols		
	3.2	LPWAN Fundamentals: LORA and NBIOT	1,2	
	3.3	Cloud / Server architectural requirements for IIOT	1,2,5	1
		Applications, Internet vs. Intranet		

4	Contro	ol & Supervisory Level of Automation			4
	4.1	Programmable logic controller (PLC)	3,7		
	4.2	Supervisory Control & Data Acquisition (SCADA)	3,7		
	4.3	Need of Human machine Interface (HMI) in Automation	3,7		
5	Data (Collection and Analysis			4
	5.1	Data Acquiring and Storage, Organizing the Data,	1,2		
		Transactions and Business Processes, Analytics			
	5.2	Introduction to Cloud Computing, Virtualization, Cloud	1,2		
		Models, Cloud Services			
	5.3	IoT Cloud-based Data Collection, Storage, Computing	1,2		
		using Xively			
6	Securi	ty Issues in IIoT			5
	6.1	Vulnerabilities of IIoT, Privacy, Security requirements,	1,2,6		
		Threat analysis			
	6.2	IoT Security tomography and layered attacker model	1,2,6		
	6.3	Security model for IIoT, Network security techniques	1,2,6		
		Management aspects of cyber security.			
				Total	26

Sr.no	Suggested List of experiments
1	To study and implement interfacing of different IoT sensors with Raspberry
	Pi/Arduino/NodeMCU and pushing data to the cloud using Thingspeak
2	To study and implement interfacing of actuators based on the data collected using IoT
	sensors (For eg. LED, Stepper motor/DC Motor)
3	To study MQTT Mosquito server and write a program on Arduino/Raspberry Pi to
	publish sensor data to MQTT broker.
4	ESP8266 Voice Control with Google Assistant and Adafruit IO
5	Interfacing Arduino/Raspberry PI with Bluetooth and send sensor data to smartphone
	using Bluetooth
6	To interface the DHT 11 sensor and display the values using the Node-red environment
7	To install MySQL database on Raspberry Pi and perform basic SQL queries for analysis
	data collected.
8	To study and implement IoT Data processing using Pandas
9	PLC programming and HMI
10	Publishing sensor data from ESP32 to AWS IoT Cloud.

Course Assessment:

Theory:

ISE-1: Activity: Assignments [20 Marks]

ISE-2: Case study and Seminar on IoT in any industry (should include study of all the sensors, communication protocols, data collection, analysis, data visualization, etc) [20 Marks]

MSE: Two hours 30 Marks written examination based on 50% syllabus <u>ESE:</u> Three hours 100 Marks (30% weightage) written examination based on entire syllabus

Laboratory:

ISE:

- 1. ISE-1 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.
- ISE-2 will be conducted for five experiments. Continuous pre-defined rubrics-based evaluation for 20 marks. Activity: Mini-project for10 marks

Recommended Books:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw Hill Education, 1st Edition
- 2. Vijay Madisetti, Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st Edition
- 3. Sudip Misra, Chandana Roy and Anandarup Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0", Taylor & Francis Group,1 st Edition
- 4. D. Patranabis, "Sensor and Transducers" (2e) Prentice Hall, 2nd Edition.
- 5. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 1 st Edition.
- Brian Russell, Drew Van Duren, "Practical Internet of Things Security", Packt Publishing,2nd Edition.

7. C.D. Johnson, "Process Control Instrumentation Technology", Pearson, 8 th Edition. Online Resources:

1.https://spoken-tutorial.org/watch/Arduino/Introduction+to+Arduino/English/

2.https://pythonprogramming.net/introduction-raspberry-pi-tutorials/

3.https://iotbytes.wordpress.com/basic-iot-actuators/

4. https://mqtt.org/

5. https://www.coursera.org/specializations/developing-industrial-iot

6.https://www.coursera.org/lecture/advanced-manufacturing-enterprise/the industrialinternet-of-things-iiot-59EvI

7. https://how2electronics.com/connecting-esp32-to-amazon-aws-iot-core-using-mqtt/

8. https://www.solisplc.com/tutorials/how-to-read-ladder-logic

Course Code		Teaching (Hrs/wee		е	С	redits Assign	ed	
		L	Т	Р	L	Т	Ρ	Total
OE2121	Project	2	1	0	2	1	0	3
	Management	Examination Scheme						
			ISE1	MSE	ISE2	ESE		Total
		Theory	20	30	20	100 (30%		100
						weightage)		
		Tutorial	20		30			150

Pre-requisite Course Codes	-	
	CO1	Apply selection criteria and select an appropriate project from different options.
	CO2	Write work break down structure for a project and develop a schedule based on it.
Course Outcomes	CO3	Identify opportunities and threats to the project and decide an approach to deal with them strategically.
	CO4	Use Earned value technique and determine & predict status of the project.
	CO5	Capture lessons learned during project phases and document them for future reference

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures, PM knowledge areas as per Project Management Institute (PMI)	1,2,3	5
2	2.1	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non- numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	1,2,3	6
3	3.1	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering,	1,2,3	8

Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart, Introduction to Project Management	_
Information System (PMIS).	
44.1Planning Projects: Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan Risk Management in projects: Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks1,2,36	6
5 5.1 Executing Projects: 4,5 8 Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings 4,5 8	8
5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit	
5.3 Project Contracting Project procurement management, contracting and outsourcing	
66.1Project Leadership and Ethics: Introduction to project leadership, ethics in projects, Multicultural and virtual projects4,56	6
6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.	
	40

Course Assessment:

Theory:

ISE-1: Quiz / Case Study Presentation / Presentation on thrust areas (20 marks) ISE-2: Mini Project (20 marks)

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus Tutorial:

1. ISE-1 Two Assignments based on 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 Three Assignments based on remaining 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books: -

1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India

2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA

- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

Course Code	Course Name	Teaching (Hrs/wee		е	С	redits Assigned			
		L	Т	Р	L	Т	Р	Total	
OE2122	Finance	2	1	0	2	1	0	3	
	Management		Examination Scheme						
			ISE1	MSE	ISE2 ESE Total				
		Theory	20	30	20	100 (30%	-	L00	
						weightage)			
		Tutorial	20		30			L50	

Pre-requisite Course Codes	-	
Course Outcomes	CO1	Understand Indian finance system and corporate finance
	CO2	Take investment, finance as well as dividend decisions

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Overview of Indian Financial System: Characteristics,	1-4	6
		Components and Functions of Financial System.		
		Financial Instruments: Meaning, Characteristics and		
		Classification of Basic Financial Instruments — Equity Shares,		
		Preference Shares, Bonds-Debentures, Certificates of Deposit,		
		and Treasury Bills.		
		Financial Markets: Meaning, Characteristics and Classification		
		of Financial Markets — Capital Market, Money Market and		
		Foreign Currency Market		
		Financial Institutions: Meaning, Characteristics and		
		Classification of Financial Institutions — Commercial Banks,		
		Investment-Merchant Banks and Stock Exchanges		
2	2.1	Concepts of Returns and Risks: Measurement of Historical	1-4	6
		Returns and Expected Returns of a Single Security and a Two-		
		security Portfolio; Measurement of Historical Risk and		
		Expected Risk of a Single Security and a Two-security Portfolio.		
	2.2	Time Value of Money: Future Value of a Lump Sum, Ordinary	1-4	
		Annuity, and Annuity Due; Present Value of a Lump Sum,		
		Ordinary Annuity, and Annuity Due; Continuous Compounding		
		and Continuous Discounting.		
3	3.1	Overview of Corporate Finance: Objectives of Corporate	1-4	9
		Finance; Functions of Corporate Finance—Investment		
		Decision, Financing Decision, and Dividend Decision.		

 Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) 4.2 Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	10
Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.44.1Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)1-44.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	10
4Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.44.1Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)1-44.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance.1-4	10
Analysis.Analysis.44.1Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)1-44.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	10
 4.1 Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) 4.2 Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	10
 Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) 4.2 Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	10
Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)4.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	
Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)4.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	
Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)4.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	
4.2Internal Rate of Return (MIRR)4.2Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.1-455.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	
 4.2 Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	
 Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	
 Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	
 Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance. 	
Management of Receivables; and Management of Cash and Marketable Securities. 5 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.	
Marketable Securities. Marketable Securities. 5 5.1 Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.	
55.1Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.1-4	
Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.	
Trade Credit, Bank Finance, Commercial Paper; Project Finance.	5
5.2 Capital Structure: Factors Affecting an Entity's Capital 1-4	
5.2 Capital Structure: Factors Affecting an Entity's Capital 1-4 Structure; Overview of Capital Structure Theories and	
Approaches— Net Income Approach, Net Operating Income	
Approach; Traditional Approach, and Modigliani-Miller	
Approach. Relation between Capital Structure and Corporate	
Value; Concept of Optimal Capital Structure	
	3
Factors Affecting an Entity's Dividend Decision; Overview of	5
Dividend Policy Theories and Approaches—Gordon's	
Approach, Walter's Approach, and Modigliani-Miller Approach	

Course Assessment:

Theory:

ISE-1: Quiz / Case Study Presentation / Presentation on thrust areas (20 marks) **ISE-2:** Mini Project (20 marks)

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus Tutorial:

1. ISE-1 Two Assignments based on 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 Three Assignments based on remaining 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:-

1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.

2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.

3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.

4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Teaching (Hrs/wee		е	С	redits Assigned		
		L	Т	Р	L	Т	Р	Total
OE2123	Environmental	2	1	0	2	1	0	3
	Management	Examination Scheme						
		ISE1 MSE ISE2 ESE Total				Total		
		Theory	20	30	20	100 (30%	100	
						weightage)		
		Tutorial	20		30		15	50

Pre-requisite Course Codes								
	CO1	Understand the concept of environmental management						
	CO2	Understand ecosystem and interdependence, food chain						
Course Outcomes		etc.						
	CO3	Understand and interpret environment related						
		legislations						

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities, Environmental issues relevant to India, Sustainable Development, the Energy scenario	1	10
2	2.1	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	1	6
3	3.1	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	1	5
4	4.1	Scope of Environment Management, Role and functions of Government as a planning and regulating agency Environment Quality Management and Corporate Environmental Responsibility	1	10
5	5.1	Total Quality Environmental Management, ISO-14000, EMS certification.	1	5
6	6.1	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	1	3
				39

Course Assessment:

Theory:

ISE-1: Quiz / Case Study Presentation / Presentation on thrust areas (20 marks) ISE-2: Mini Project (20 marks)

MSE: Two hours 30 Marks written examination based on 50% syllabus

ESE: Three hours 100 Marks (30% weightage) written examination based on entire syllabus Tutorial:

1. ISE-1 Two Assignments based on 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2 Three Assignments based on remaining 50% Syllabus

Continuous pre-defined rubrics-based evaluation for 30 marks.

Recommended Books:-

1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999

2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing

3. Environmental Management V Ramachandra and Vijay Kulkarni, TERI Press

4. Indian Standard Environmental Management Systems — Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005

5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000

6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press

7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Course Code	Course Name	٦		hing So Irs/we		e	Credit	ts Assigned		
		L	Т	· P		L	Т		Р	Total
		0	C) 2		0	0		1	1
		Examination Scheme								
CCL21CE02	Advanced Cloud Computing	IS	E	M	SE		ISE	E	SE	Total
		25	5				25			50

Pre-requisite	C programm	ning, Operating Systems, Basics of Networking, Web					
	Technology						
	On successf	ul completion of the course learner will be able to					
	C01	Analyze cloud computing architectures, including virtualization, service models (IaaS, PaaS, SaaS), and deployment models (public, private, hybrid, community) to understand their applicability and implementation.					
	CO2	Design scalable, secure, and efficient cloud-based solutions using AWS services such as EC2, S3, RDS, Lambda, and VPC.					
Course Outcomes	CO3	Deploy containerized applications using Docker and orchestrate them with Kubernetes to achieve high availability and scalability.					
	CO4	Construct a private cloud infrastructure utilizing open-source tools like OpenStack/Cloud Foundry to offer computing capabilities and application services.					
	CO5	Automate the software development lifecycle in cloud environments by applying DevOps practices, including continuous integration and continuous delivery (CI/CD), using tools like Jenkins and Docker.					

Exp.	Name of the experiment	Ref	Hr
No.			S
Modules a	and Concepts: Virtualization - Study and Implementation of Hypervisors		
1	Understand the architecture and functionality of both Type 1 (bare metal) and Type 2 (hosted) hypervisors. Implement and compare their performance on the same hardware. Tools: Type 1 - Xen, Hyper-V, VMware ESX/ESXi; Type 2 - Oracle VirtualBox, VMware Workstation	1	2
	Cloud Computing and AWS basics		
2	Introduction to cloud computing, understanding of service models (IaaS, PaaS, SaaS), and deployment models (public, private, hybrid, community).	2	2

3	AWS basics (EC2, EBS, S3, and DB): Learn to create and manage AWS EC2 instances, use EBS for persistent storage, S3 for object storage, and RDS for database services.	3	2
	AWS Security	•	
4	Design and implement a secure VPC within AWS, including subnet creation, internet gateway setup, and route table configuration.	3	2
5	Explore Identity and Access Management (IAM) for managing permissions and Security Groups and Network Access Control Lists (NACLs) for securing VPCs.	3	
	AWS services		•
6	Server less Computing- AWS Lambda: Implement serverless architecture using AWS Lambda. Understand triggers, deployment, and use cases.	3	2
7	AWS messaging/notification service- SNS and SQS: Implement and differentiate between Simple Notification Service (SNS) for pub/sub messaging and Simple Queue Service (SQS) for message queuing.	3	2
	DevOps/Containerization		
8	Docker: Introduction to containerization with Docker. Learn to create, manage, and deploy Docker containers. Tools: Docker	5	2
9	Kubernetes: Deploy and manage containerized applications with Kubernetes. Understand pods, deployments, services, and scaling. Tools: Minikube, Kubernetes	6	2
	Machine Learning Operations		
10	Deploy a machine learning model and set up a CI/CD pipeline for continuous integration and delivery of ML projects. Tools: Jenkins, Docker, GitHub Actions	7	2
	Private Cloud		
11	Install and configure a private cloud environment with computing capabilities using OpenStack. Tools: OpenStack	4	2
12	Deploy applications and services on a private cloud infrastructure. Implement service orchestration. Tools: Cloud Foundry, OpenStack	4	2
	Mini Project: (Suggested list of Mini Project Topics)	I	
			1

13	Deployment of a scalable web application on AWS using EC2, 33, and RDS.	
	mplementing a CI/CD pipeline for a machine learning project using Jenkins and Docker.	
	Building a serverless application using AWS Lambda for real- ime data processing.	
	Developing a microservices architecture application deployed on Kubernetes.	
	etting up and managing a multi-tier application on a private loud using OpenStack.	

Course Assessment

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. Matthew Portnoy, Virtualization Essentials, 3rd Edition, Siley ISBN: 978-1-394-18157-5
- 2. Shailendra Singh, Cloud Computing, Oxford Higher Education, 2018.
- 3. Bernard Golden Amazon Web Services for Dummies
- 4. Kevin Jackson , Cody Bunch, Open Stack Cloud Computing Cookbook, 2nd Edition, Packt Publishing, 978-1-78216-758-7
- 5. Sean P. Kane, Karl Matthias, Docker: Up & Running, 3rd Edition, O'Reilly
- 6. Brendan Burns, Joe Beda, Kelsey Hightower, Lachlan Everson, Kubernetes: Up and Running, 3rd Edition, O'Reilly
- 7. Vishwajyoti Pandey, Shaleen Bengani, Operationalizing Machine Learning Pipelines: Building Reusable and Reproducible Machine Learning Pipelines Using MLOps, 2022, BPB

Online Resources:

- Introduction and overview of cloud computing: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-292.pdf
- 2. AWS Documentation: https://docs.aws.amazon.com/
- 3. "OpenStack Docs: Current", http://docs.openstack.org/
- 4. https://docs.docker.com/manuals/
- 5. https://kubernetes.io/docs/home/

Further Reading:

- 1. "vSphere 5 Documentation Center:", http://pubs.vmware.com/vsphere-50/index.jsp.
- 2. "Google App Engine", https://developers.google.com/appengine/.
- 3. "Windows azure: Microsoft's Cloud Platform| Cloud hosting |Cloud Service ", http://www.windowsazure.com/en-us/

Course Code	Cours	se Nam		g Sche /week		Credits Assigned				
				L	Т	Р	L	Т	Р	Total
			0	0	2	0	0	1	1	
SBL21CE02 Cvbe		.				Exa	minat	ion Sc	heme	1
SDLZICEUZ	Cyber	Cyber Forensic				MSE	ISE2	E	SE	Total
				25	-	-	25			50
Pre-requisite	Cryptography and Network Security									
On successful of			ccessful co	completion of the course learner will be able to						be able to
			D1 Demonstrate an understanding of different types of							
			cybercrime.							
		CO2	Apply knowledge of data acquisition methods using						s using	
Course O	Course Outcomes		appropriate tools and techniques.							
course outcomes		CO3	Explore th	ne func	tion	ality o	f tools ⁻	for da	ta ana	alysis
		through practical demonstrations.								
		CO4	Evaluate case studies and simulations to simulate							
			forensic investigations of cybercrime incidents.							

Exp. No.	Name of the experiment	Ref	Hrs
	Simulate the Network attacks		
1		1, 2, Online	2
	Simulate DOS attack using HPing3	2	
2.	To install and explore ARPWATCH and ETTERCAP.	1, 2 Online 2	2
	File System Forensics		
3	 a. File system analysis using open-source tools like Autopsy and Sleuth Kit. b. Recovering deleted files and examining file metadata. 	1, 2 Online 2	2
	Data Acquisition	2	
4	 a. Performing disk imaging using open-source tools like dd and FTK Imager b. Verifying disk images using hashing algorithms 	1, 2 Online 1,2	2
	Data Analysis		
5	Perform Forensic on image of disk captured for analyzing data using Autopsy/ Volatility tools.(can use DFIR challenges)	1, 2 Online 1,2	2
	Email and Social Media Forensics	•	

6	Extracting and analyzing email headers, attachments, and social media artifacts using Autopsy/ Volatility tools.	1, 2 Online 1,2	2
	Network Forensics	,	
7	 a. Using Wireshark to capture and analyze network traffic b. Identifying suspicious network activities and potential security threats 	1, 2 Online 1,2	2
8	Scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, xmas scan etc using NMAP	1, 2 Online 1,2	2
	Mobile Forensics		
9.	 a. Demonstrate functionalities of Android and iOS forensics using open-source tools Andriller and MobSF b. Extracting data from mobile devices and analyzing mobile artefacts using open-source tools Andriller and MobSF. 	1, 2 Online 1,2	2
	Mini Project (Suggested Topic List)		
10.	 Data Breach Investigation: Scenario: A large corporation experiences a data breach where sensitive customer information, including personal and financial data, is stolen by hackers. Investigation: Forensic analysts are tasked with investigating the breach to determine the source of the attack, the extent of the data compromise, and the techniques used by the attackers to gain unauthorized access. Tools and Techniques: Investigators may use network forensics tools to analyze network traffic logs, malware analysis tools to dissect malicious software used in the attack, and memory forensics tools to examine volatile memory for evidence of compromise. Employee Misconduct: Scenario: An employee is suspected of engaging in unauthorized activities, such as accessing sensitive company data without permission or sharing confidential information with external parties. Investigation: Digital forensic analysts are called upon to conduct an investigation to gather evidence of the employee's activities, including their digital footprint, communications, and file access history. 	1, 2,3 Online 1,2	2

 Ransomware Attack: Scenario: A company's computer systems are infected with ransomware, which encrypts critical data and demands a ransom for decryption. Investigation: Cyber forensic experts are brought in to investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. Intellectual Property Theft: Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		unauthorized software or files, and social media forensics tools to uncover any relevant online activity.
 3.1. Scenario: A company's computer systems are infected with ransomware, which encrypts critical data and demands a ransom for decryption. 3.2. Investigation: Cyber forensic experts are brought in to investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 	2	
 ransomware, which encrypts critical data and demands a ransom for decryption. 3.2. Investigation: Cyber forensic experts are brought in to investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 	5.	
 ransom for decryption. 3.2. Investigation: Cyber forensic experts are brought in to investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 3.2. Investigation: Cyber forensic experts are brought in to investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 investigate the ransomware attack, identify the point of entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 entry, and determine the scope of the infection. 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 3.3. Tools and Techniques: Investigators may use memory forensics tools to analyze volatile memory for signs of ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 ransomware activity, disk forensics tools to examine infected systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 systems for artifacts related to the attack, and network forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		forensics tools to analyze volatile memory for signs of
 forensics tools to trace the origin of the malware infection. 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		ransomware activity, disk forensics tools to examine infected
 4. Intellectual Property Theft: 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		systems for artifacts related to the attack, and network
 4.1. Scenario: A company suspects that an employee or competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		forensics tools to trace the origin of the malware infection.
 competitor has stolen intellectual property, such as trade secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 	4.	Intellectual Property Theft:
 secrets, patents, or proprietary software code. 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 4.2. Investigation: Forensic analysts are tasked with gathering evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 evidence to support the company's suspicions and identify the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 the individuals or entities involved in the theft. 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 4.3. Tools and Techniques: Investigators may use data recovery tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
 tools to retrieve deleted files or documents, metadata analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks: 		
analysis tools to examine file properties and timestamps, and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks:		
and document analysis tools to compare versions of documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks:		
documents for evidence of tampering or unauthorized access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks:		
access. Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks:		
Mini project can be implemented and presented in groups of 2/3 students. Students can use Incident Response Playbooks:		
students. Students can use Incident Response Playbooks:	М	
ILUSTOMIZED DASED ON SCENATIOS, UDEN-SOURCE INTEILIGENCE (USINT)		istomized based on scenarios, Open-Source Intelligence (OSINT)

Course Assessment

ISE:

1. ISE-1 will be conducted 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

2. ISE-2

a. will be conducted reaming 50% of experiments. Continuous pre-defined rubrics-based evaluation for 20 marks.

b. Presentation /Simulation using modern tools to solve the given problem statement for 10 marks

Recommended Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. Kevin Mandia, Chris Prosise, —Incident Response and computer forensics||, Tata McGrawHill, 2006
- 3. Digital Forensics Basics A Practical Guide Using Windows OS Nihad A. Hassan, APress Publication, 2019

Online Resources:

- 1. Course on Cyber Incident Response https://www.coursera.org/learn/incident-response
- 2. Course on —Penetration Testing, Incident Responses and Forensics|| https://www.coursera.org/learn/ibm-penetration-testing-incident-response-forensics

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Sc	achin hemo /wee	e		Credits Assigned				
		L	Т	Р		L	Т	Ρ	Total	
	Major Project: Dissertation – I			28				14	14	
				#						
MP22CE01		Examination Scheme								
		ISE1		MSE	ISE2	E	SE		Total	
		20			30		50		100	

indicates workload of Learner (Not Faculty) Guidelines for Dissertation-I –Internship

Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format. Guidelines for Assessment of Dissertation-I.

Dissertation-I should be assessed based on following points

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope Dissertation-I should be assessed through a presentation by a panel of Internal examiners and external examiner appointed by the Head of the Department/Institute of respective Programme.

Course Assessment:

<u>ISE-1:</u>

Continuous Evaluation by project guide followed by presentation before a panel of examiners (20 marks)

<u>ISE-2:</u>

Continuous Evaluation by project guide followed by presentation before a panel of examiners (30 marks)

ESE: Continuous Evaluation by project guide followed by presentation before a panel of examiners (50 marks)

Society of St. Francis Xavier, Pilar's Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050

(Autonomous College affiliated to University of Mumbai)

Course Code	Course Name	Sc	achin hem /wee	e		Credits Assigned				
		L	Т	Р		L	Т	Р	Total	
	Major Project: Dissertation – II			40				20	20	
				#						
MP22CE02		Examination Scheme								
		ISE1		MSE	ISE2	E	SE		Total	
		50			50	1	L OO		200	

indicates work load of Learner (Not Faculty) Guidelines for Assessment of Dissertation II

Dissertation II should be assessed based on following points:

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- Quality of work attempted or learner contribution
- Validation of results
- Quality of Written and Oral Presentation

Students should publish at least one paper based on the work in referred National/ International conference/Journal of repute.

Course Assessment:

ISE-1: Continuous Evaluation by project guide followed by presentation before a panel of examiners based on predefined rubrics (50 marks)

ISE-2: Continuous Evaluation by project guide followed by presentation before a panel of examiners (50 marks)

ESE: Continuous Evaluation by project guide followed by presentation before a panel of internal examiners and external examiner (100 marks)